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SUMMARY. A particle-based mesoscopic model for fluid dynamics has recently introduced [14].
The model has been mainly developed for simulating a mesoscale coarse-grained dynamics for
solvent-solute interaction in complex fluids such as polymers in solution and colloid suspension. In
the present contribution the equilibrium properties and the relaxation dynamics of a DNA molecule
are investigated. The model has proven to be fully able to capture the essential features of polymer
dynamics in a good solvent. Moreover here this approach has been applied for the first time to study
DNA dynamics in slit-like geometries.

1 INTRODUCTION
The alteration of the behavior of biopolymers, like DNA, in bounded geometry is observed in

many circumstances both in nature or in technological applications. Let us think for instance to
the recent development of micrifluidic devices designed forthe manipulation of macromolecules.
In such a scenario, a number of experimental and numerical studies have investigated relaxation
dynamics of DNA in rectangular channels [10] while only recently some experimental investigation
of DNA in slitlike geometry have appeared [3]. In this contribution we propose a numerical study
of DNA relaxation in such a geometry. Actually the issue has been firstly studied by Brochard and
de Gennes [5] that provide theoretical prediction for several statistical properties of polymer chains
by means of the blob theory i.e. describing a polymer as a string of blobs of dimensions comparable
with the confinement. Such theory obtains scaling laws for equilibrium extension of the polymer,
center of mass diffusion and relaxation time.

The physics involved in such a setup accounts for a large number of degrees of freedom since
in principle the range of time and length scales of the phenomena which affect the problem is large.
Going from relaxation time of the chain and the microscale ofthe confining geometry to the rapid
motions of the solvent molecules and the nanoscale of the interaction between those and the poly-
meric chain. In this perspective the problem is unfeasible for atomistic numerical simulation and a
mesoscale description is needed.

The numerical results presented have been obtained simulating a modellized DNA molecule
immersed in a solvent whose dynamics is coarse grained via a Multiparticle Collision Dynamic
model [14], where only the slower time scale that can interact with the indolent motion of the DNA
molecule are retained. Such a model is a particle based Navier Stokes solver introduced by Mal-
evanets and Kapral [14]. In such approach both the Brownian dynamics and the hydrodynamic
interaction are naturally accounted by the solvent model. Also the DNA molecule is modelled via
a mesoscopic approach as a necklace of beads connected by wormlike chain springs, representing
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the entropic elasticity associated with the stretching of one portion of the polymer, which interact
via an excluded volume potential. The simulated system is a slit-like channel where the distanceh
between the walls is changed around values of the same order of magnitude of the equilibrium length
of the DNA molecule. A stretched chain is positioned in the center of the channel and the relaxation
towards equilibrium is studied. The effect of confinement itis expected to modify the dynamics of
the polymer when the transversal dimension of the coil becomes of the same order ofh.

The paper is structured as follows. A first section introduces the details of the simulations de-
scribing the model for the solvent and for the polymer. A second section goes through the results
obtained both for confined and unconfined simulations. The formed are aimed to check the capabil-
ity of the mesoscopic model to reproduce relevant characteristics of polymer dynamics. The latter
simulations will show the dependency of the results on the different slit height.

2 MATHEMATICAL MODEL
2.1 Solvent dynamics
For the solvent modelling the multi particle collision dynamics [14] (MPCD, also known as

stochastic rotation particle) approach is used. In MPCD thesolvent is modelled as a system ofN
particles of massm, positionxi and velocityvi, i = 1, . . . , N . The time is discretized in interval of
length∆t. The evolution of the system through a single time interval∆t is the result of two steps,
namely the streaming and the collision steps. In the streaming step the particles dynamic is rules by
standard Newton second law. The solvent particles don’t interact with each other, hence, in absence
of external forcing, the evolution is simply,

xi(t + ∆t) = xi(t) + ∆tvi(t). (1)

In the collision step the system is divided in cubic cell of side l. For each cellc the mean velocity
Vc is calculated as the average of instantaneous velocity of the particle inside the cell. The particle
velocity is then changed according to

v
a
i = Vc + ω

(

v
b
i − Vc

)

(2)

where the apicesa and b stand for “after” and “before” collision, whileω is a random rotation
matrix. In this study we use a rotation of a fixed angleα = 5/6π in a uniformly distributed random
direction. From the particle dynamics the solvent temperature is defined asθ = 〈miv

2

i 〉/3, where we
consider the Boltzmann constant equal to unit. Several theoretical and numerical studies analyzed the
properties of MPCD solvent. In particular MPCD is able to reproduce in average the hydrodynamic
motion [14, 13] The transport coefficient, such as viscosity, could be estimated as a function of
statistic property of random matrix and fluid property (density, temperature, particle mass) [12, 9].
An additional step is implemented to ensure Galilean invariance [8], namely the grid defining the
collision cells is shifted before each collision by a randomvector whose component are extracted
from a uniform distribution on the[−l/2, l/2] interval. In the present study we used the length of
the MPCD celll as length unit, the massm of a solvent particle as mass unit andkbθ as energy unit.

2.2 Polymer dynamics
To model in a realistic way a polymer in a dilute solution bothexcluded volume and hydro-

dynamic interaction have to be taken into account. The polymeric chain is divided into segments
each of them represening a subset of monomers and modelled bya bead and a spring. With such a
choice the description of physical short-range interactions is neglected to achieve a feasible model
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Figure 1: Sketch of domain representing the slitlike domain. Periodic boundary condition are applied
in x andy directions. At the beginning of the simulation (left) the polymer is stretched along x
direction, after a transient a coiled conformation is reached (right).

for long-range motions. More in detail our polymer is modelled, following [11], as a sequence of
Nb bead of massM whose position are indicated asRi. Adjacent beads interact by means of the
spring potential

V s
ij =

kbθ

2bk

[

R0

(

1 −
Rij

R0

)

−1

− Rij +
2R2

ij

R0

]

, (3)

and the corresponding force

F
s
ij =

kbθ

2bk

[

(

1 −
Rij

R0

)

−2

− 1 +
4Rij

R0

]

Rij

Rij
, (4)

with bk Kuhn length andRij = Ri − Rj . BeingNk the number of Kuhn segments in the whole
molecule,Nk,s the number of segments in each of the spring andNs = Nb − 1 the number of
spring, we haveR0 = Nk,sbk and the total contour length of the polymerL = Nkbk = R0Ns. The
excluded volume interaction between all the beads pairs is

Uev
ij =

1

2
vkbθN

2

k,s

(

3

4πS2
s

)3/2

exp

[

−3Rij

4S2
s

]

(5)

with

S2

s = Nk,s
b2

k

6
(6)

andv the excluded volume parameter. In the overcited unit the mass of a single bead is,M = 10,
bk0.14, Nk,s = 17.4 andv = 0.012. The beads do participate to the collision phase. Equations
of motion for the beads are numerically integrated using a standard velocity Verlet scheme [2] with
time stepδt = 0.1∆t.

2.3 Confined simulations setup
We performed simulation in slitlike geometry with the two walls parallel to theOxy plane, the

z coordinate of the wall is indicated aszw. In the streaming phase standard bounce back role [4]
is applied to solvent particle. The polymer confinement is obtained with the repulsive LJ potential
(σw = 1 andǫw = 1)

V (zi) = 4ǫw

[

(

σw

zi − z′w

)12

−

(

σw

zi − z′w

)6
]

+ ǫw , zi − z′w < 21/6σw (7)
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Figure 2: Left: Snapshot of a DNA modelled chain forNb = 160 immersed in the mesoscopic
solvent. Right: Gyration radius (Rg,fs) with respect to the number of beadsNb. The symbols
represent the results of the numerical simulations while the dashed line is the theoretical prediction
for the Zimm model for a good solvent.

and zero for(zi−z′w) > 21/6σw acting on each bead. In expression 7zi is the bead z coordinate and
z′w is a plane placed at a distanceσw inside the wall position (i.e. thez = zw plane at which bounce
back is performed for solvent particles). Actually with this choise a bead at the wall (zi = zw)
experienced a potential ofθkb hence, due to the stiffness of LJ potential the beads hardly cross the
wall. On the other hand the LJ potential affect only a small slab(21/6 − 1)σw ≃ 0.12l thick, close
to the wall resulting in the fact that the polymer is able to explore the whole channel. Concerning
the collision phase we follow the implementation of Lamura et al. [13], where virtual thermalized
particles were added to the collision cells crossed by the wall.

3 RESULTS
3.1 Unconfined simulations
In order to test our model some unconfined simulation (i.e. ina free space) have been performed

at different molecular weights, namelyNb = 20, 40, 80, 160. Each molecule has been placed in
a cubic box with periodic boundary conditions whose length size was approximately ten times the
expected equilibrium stretch. Long simulations without any forcing have been performed and some
relevant statistical observables have been collected. Thefirst observable analyzed is the gyration
radiusRg,fs (wherefs stays for free space), defined as [7]

R2

g,fs =
1

Nb

Nb
∑

i=1

〈(Ri − RG)2〉

with RG is the position of the center of mass of the chain andRi the beads positions. In the right
panel of figure 2.3 its scaling behavior is reported as a function of the molecular weight, the results
show a good agreement with the theoretical expectation

Rg,fs ≃ Nν
b , (8)

whereν = 0.588 for a long chain with excluded volume, i.e. Zimm model for a good solvent.
To evaluate the relaxation behavior of the DNA molecule, a Rouse normal coordinates analysis
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Figure 3: Left: Autocorrelation time of the first Rouse mode (τ1 = τ ) with respect to the number of
beadsNb. The symbols represent the results of the numerical simulations while the dashed line is
the theoretical prediction for the Zimm model for a good solvent. Right: Normalized autocorrelation
for the first three Rouse modes rescaled with the respective theoretical predictions forNb = 40, 80.

has been been performed. Defining the Rouse modes in their discrete version, as in [15],

Xp =
1

Nb

n
∑

i=1

Ri cos

[

pπ

N

(

i −
1

2

)]

, (9)

it is expected that the autocorrelation of the modes decays exponentially

〈Xp(t + t0)Xp(t0)〉 = 〈X2

p〉 exp

(

−
t

τp

)

, (10)

a theoretical prediction for the values of the relaxation times for the Rouse model can be given as [15]

τp =

(

p

Nb

)1/2

sin−2

(

pπ

Nb

)

. (11)

Evaluating the l.h.s. of equation (10) forp = 1 allows for the identification of the longest relaxation
time τ1 = τ for all the analyzed molecular weights. In figure 3 the behavior of τ againstNb is
shown and once more a good agreement with the Zimm scaling in agood solvent, i.e.τ ∼ N3ν ,
is produced. For one (two) of the studied molecular weights,namelyNb = 40, the behavior of
the normalized autocorrelation function (10) of the first three Rouse modesXp is studied and the
obtained time decay, showing a good exponential fit, is reported in figure 3. The x-axis has been
rescaled for each relaxation time with the expected scalingbehavior,τp ∼ p−3ν [1]. The excellent
agreement at least for the early stages of relaxation, without need of the correction proposed in [1],
should be noted.

3.2 Confined simulations
The relaxation dynamics of DNA is studied via non equilibrium runs in which the DNA molecule,

initially in elongated conformation along thex direction, spontaneously coils (fig. 1) up until it
reaches an equilibrium configuration. Independent randomly generated configurations, where the
polymer elongation inx direction was about 60% of the polymer contour lengthLc, were used as
initial conditions for the runs.
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Figure 4: Left: Average polymer extensions (triangles〈Zeq〉, square〈Yeq〉, circle〈Xeq〉) as functions
of the channel height. All quantities are normalized with free space average extension. Right:
Normalized wall parallel polymer extension plotted as a function of the inverse normalized channel
height. The dashed line is the scaling prediction 12.

The statistic of the conformation of a coiled polymer in freespace is isotropic. Hence, defined the
free space polymer extension inx direction asXex,fs = maxx (x1, . . . , xNb

)−minx (x1, . . . , xNb
),

i.e. the length of the projection of the polymer on the x axis,and the analogous extensionsYex and
Zex in they andz directions respectively, the isotropy in free space implies 〈Xex,fs〉 = 〈Yex,fs〉 =
〈Zex,fs〉. This is not the case in slitlike geometry, actually if the channel heighth is comparable,
or smaller, than〈Zeq,fs〉 confinement breaks isotropy and as reported by Balducci et al. [3] other
alterations of the dynamical behavior set in.

Figure 4 reports the average values of aNb = 80 polymer extensions in all the three direction
as functions of channel heighth (h = 5, 7, 9, 18). Both quantities are normalized with free space
average extension. It is apparent that while for strong confinement –h < 〈Xex,fs〉 – the z extension
is smaller than free space one, while x and y extensions are slightly larger, forh > 2〈Xex,fs〉 the
isotropy is fully recovered.

According to de Gennes the behavior of a linear polymer with persistence lengthbk and contour
lengthNkbk confined in a slitlike channel with heighth between the equilibrium length andbk

can be described as follows. The molecule is seen as a chain ofblobs of dimensionh, whose
configuration follows a two-dimensional self-avoiding walk and no hydrodynamic interaction (HI)
is assumed. The segments of the chain inside the blob followsa three-dimensional self-avoiding
walk and they interact hydrodynamically. Under these assumptions, we obtain a scaling for the
equilibrium extension with respect to heighth as

〈Xex,eq〉

Rg,fs
∼

(

Rg,fs

h

)1/4

(12)

where the values of the exponents have been obtained using the ideal values3/4 e3/5 for the Flory-
Edwards exponentsν2D andν3D respectively. As shown in the right plot of figure 4, in our set-up
the cross-over between free-space behavior to confined slit-like one occurs for values ofRg,fs/h
larger than0.4 i.e. for approximately the same confinement as those reported in [6]. This plot shows
that only two of our results seems to lay in a really confined regime, in any case the comparison with
the expected scaling regime 12 is good.
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Figure 5: Left panel, time evolution of averaged extension〈Xex〉 of aNb = 80 chain, the four curves
correspond toh = 5, 7, 9, 18, the smaller channel corresponding to slower decaying to equilibrium
values. The inset evidences that the asymptotic value is different. Right panel, time evolution of
〈Zex〉 for the same sets of simulations.

Ensemble average estimated on at least 50 independent simulations for each channel height, are
calculated for time evolution of polymer extension. Left panel of figure 5 reports the time evolution
of the ensemble average of extensionXex. The four lines corresponds to the four channel heights
and converge to the equilibrium values, being the slower oneassociated with the narrower channel.
The inset clearly shows that the four asymptotic values are different as expected from equilibrium
run (figure 4). The time evolution of〈Zex〉 is reported right panel of figure 5. Here the difference
among curves are more apparent, actually the smaller channel curves converge to a smaller value of
Zex and the fluctuations around this values are much more dumped respect less confined cases. In
particular once the regime values is reached (t > 5000) theh = 5 andh = 7 extension are more or
less constant. This behavior is apparent also in a single realization (data not shown). On the other
end forh = 9 andh = 18 the curves are much more rough. This effect, due to relatively poor
statistics (only 50 simulations are used for ensemble average) is related to an higher equilibrium
value of extension variance〈Z2

ex,eq〉 (for the four channel height from the smaller to the higher we
have〈Z2

ex,eq〉 = 0.26, 0.80, 1.38, 5.49). This effect is due to the fact that for channel smaller than
free space extension the movement of the polymer are much more influenced by the confinement.

In order to better evidence the characteristics of the relaxation dynamics at different channel
height, following Balducci et al. [3] we report in figure 6 thescaled squared extension along x
direction defined as〈(X2

ex〉 − 〈X2

ex,eq〉)/L2

c . In this figure the time is set to zero when the polymer
extension is 30% of contour length (〈Xex/Lc〉 = 0.3). A sort of double regime (fast relaxation for
t < 1500 and slow relaxation near equilibrium,2000 < t < 4000) is observed. However it should
be noted that the tail of the curves2000 < t < 4000 is dramatically affected by small changes
in the value of〈X2

ex,eq〉. This could be easily explained in terms of error propagation, actually
the relative error of scaled squared extension is proportional to the relative error in estimation of
〈X2

ex,eq〉 with a factor of〈X2

ex,eq〉/(〈X2

ex〉 − 〈X2

ex,eq〉). Near equilibrium this factor is very large,
actually for 〈X2

ex〉 = 1.1〈X2
ex,eq〉, obtained fort ≃ 5000 the factor is 10. Our accuracy in the

determination of〈X2

ex,eq〉 do not allow us corroborate or not the two scaling law pictureproposed
by Balducci et al. [3], hence we concentrate our attention onthe far from equilibrium relaxation
dynamics (t < 1000).
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Figure 6: Left: Time evolution of scaled squared extension(〈X2

ex〉 − 〈X2

ex,eq〉)/L2

c for relaxation
dynamics of aNb = 80 polymer in three different channel (h = 5, 9, 18). The smaller the channel the
slower the relaxation to equilibrium value. Right: Relaxation time far from equilibrium normalized
with the bulk relaxation time versus normalized inverse channel height (symbols). The dashed line
represent an empirical fit with slope0.32.

Though confinement effects are still not strong in this regime when compared to [3] it is i still
possible to observe a mild change in the relaxation dynamics. Actually the scaling of the altered
relaxation time far from equilibrium shows a dependence on the channel heighth which is weaker
(h−32 vs. h−0.5 than the one observed by [3], see right plot in figure 6. These results together with
those in figure 4 corroborate the fact that our current simulations are in a mild confinement regime
and further analysis for smaller channel heights might be useful.

4 CONCLUSIONS
The dynamics of a DNA chain both in unconfined and in a slitlikechannel has been studied

numerically via a novel mesoscopic approach. Results for the unconfined geometry show that the
present numerical model is fully able to capture the essential features of polymer dynamics in a good
solvent. Moreover, this approach has been applied for the first time to study DNA dynamics in slit-
like geometries. Though the present analysis deals to mild confinement the present methodology
appears to be an excellent candidate to reproduce and confirmrecent results obtained in confined
flow [3] and to test the results against existing theories.
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