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SUMMARY. A particle-based mesoscopic model for fluid dynesninas recently introduced [14].

The model has been mainly developed for simulating a mekoso@arse-grained dynamics for
solvent-solute interaction in complex fluids such as polsge solution and colloid suspension. In
the present contribution the equilibrium properties arerdaxation dynamics of a DNA molecule

are investigated. The model has proven to be fully able ttucapthe essential features of polymer
dynamics in a good solvent. Moreover here this approach &es &pplied for the first time to study

DNA dynamics in slit-like geometries.

1 INTRODUCTION

The alteration of the behavior of biopolymers, like DNA, iaumded geometry is observed in
many circumstances both in nature or in technological apptins. Let us think for instance to
the recent development of micrifluidic devices designedtier manipulation of macromolecules.
In such a scenario, a number of experimental and numerigdiest have investigated relaxation
dynamics of DNA in rectangular channels [10] while only neity some experimental investigation
of DNA in slitlike geometry have appeared [3]. In this cobtriion we propose a numerical study
of DNA relaxation in such a geometry. Actually the issue hesrbfirstly studied by Brochard and
de Gennes [5] that provide theoretical prediction for selstatistical properties of polymer chains
by means of the blob theory i.e. describing a polymer as lagstri blobs of dimensions comparable
with the confinement. Such theory obtains scaling laws failégium extension of the polymer,
center of mass diffusion and relaxation time.

The physics involved in such a setup accounts for a large puwmidegrees of freedom since
in principle the range of time and length scales of the pheax@awhich affect the problem is large.
Going from relaxation time of the chain and the microscaléhefconfining geometry to the rapid
motions of the solvent molecules and the nanoscale of tieeaction between those and the poly-
meric chain. In this perspective the problem is unfeasibteafomistic numerical simulation and a
mesoscale description is needed.

The numerical results presented have been obtained singuatmodellized DNA molecule
immersed in a solvent whose dynamics is coarse grained vialipislrticle Collision Dynamic
model [14], where only the slower time scale that can intendth the indolent motion of the DNA
molecule are retained. Such a model is a particle based N&tokes solver introduced by Mal-
evanets and Kapral [14]. In such approach both the Brownjaramlics and the hydrodynamic
interaction are naturally accounted by the solvent modédo Ahe DNA molecule is modelled via
a mesoscopic approach as a necklace of beads connected tmikeochain springs, representing



the entropic elasticity associated with the stretchingreé portion of the polymer, which interact
via an excluded volume potential. The simulated system Ig-Bke channel where the distande
between the walls is changed around values of the same dnabagmitude of the equilibrium length
of the DNA molecule. A stretched chain is positioned in theteeof the channel and the relaxation
towards equilibrium is studied. The effect of confinemers ixpected to modify the dynamics of
the polymer when the transversal dimension of the coil bexsoofithe same order af

The paper is structured as follows. A first section introdutte details of the simulations de-
scribing the model for the solvent and for the polymer. A seteection goes through the results
obtained both for confined and unconfined simulations. Thedal are aimed to check the capabil-
ity of the mesoscopic model to reproduce relevant chariatitey of polymer dynamics. The latter
simulations will show the dependency of the results on tfferdint slit height.

2 MATHEMATICAL MODEL

2.1 Solvent dynamics

For the solvent modelling the multi particle collision dynmias [14] (MPCD, also known as
stochastic rotation particle) approach is used. In MPCDsthleent is modelled as a system f
particles of mass, positionx; and velocityv;,7 = 1,..., N. The time is discretized in interval of
lengthAt. The evolution of the system through a single time intervais the result of two steps,
namely the streaming and the collision steps. In the stnegstep the particles dynamic is rules by
standard Newton second law. The solvent particles dorétaut with each other, hence, in absence
of external forcing, the evolution is simply,

In the collision step the system is divided in cubic cell afesi. For each celt the mean velocity
V. is calculated as the average of instantaneous velocityegbéhticle inside the cell. The particle
velocity is then changed according to

vi=V.4w (V? — VC) (2)

where the apicea andb stand for “after” and “before” collision, whilev is a random rotation
matrix. In this study we use a rotation of a fixed angle- 5/6 in a uniformly distributed random
direction. From the particle dynamics the solvent tempeesis defined a8 = (m;v?)/3, where we
consider the Boltzmann constant equal to unit. Severat#tieal and numerical studies analyzed the
properties of MPCD solvent. In particular MPCD is able torcehuce in average the hydrodynamic
motion [14, 13] The transport coefficient, such as viscosibuld be estimated as a function of
statistic property of random matrix and fluid property (dgnsemperature, particle mass) [12, 9].
An additional step is implemented to ensure Galilean iararé [8], namely the grid defining the
collision cells is shifted before each collision by a randesetor whose component are extracted
from a uniform distribution on thé-1/2,1/2] interval. In the present study we used the length of
the MPCD celll as length unit, the mass of a solvent particle as mass unit al@ as energy unit.

2.2 Polymer dynamics

To model in a realistic way a polymer in a dilute solution bettcluded volume and hydro-
dynamic interaction have to be taken into account. The pehjgrchain is divided into segments
each of them represening a subset of monomers and modellethézd and a spring. With such a
choice the description of physical short-range interaiis neglected to achieve a feasible model
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Figure 1: Sketch of domain representing the slitlike domB&riodic boundary condition are applied

in z andy directions. At the beginning of the simulation (left) thelyoer is stretched along x
direction, after a transient a coiled conformation is reatfright).

for long-range motions. More in detail our polymer is modd|lfollowing [11], as a sequence of
N, bead of masg/ whose position are indicated &s;. Adjacent beads interact by means of the
spring potential

k0 Rii\ ! 2R2,
Vs =22 |Ry(|1 =24 — Ry iJ 3
t 2by, 0 ( Ry ) it Ry ’ ( )
and the corresponding force
0 Ri;\ ° AR;; | Ry
FS = — 1 - 2Y -1 J ij 4
) 2bk l( RO ) + RO RZJ ) ( )

with b, Kuhn length andR;; = R; — R;. Being N}, the number of Kuhn segments in the whole
molecule, N, s the number of segments in each of the spring ahd= N, — 1 the number of
spring, we have?y = Ny, sbi, and the total contour length of the polymer= Nb;, = RoN,. The
excluded volume interaction between all the beads pairs is

w1 . [ 3\ [-3R;
U” = §Ukb9Nk75 (FS?) exp 4852 (5)
with
b2
552 - Nk75€k (6)

andv the excluded volume parameter. In the overcited unit thesrofa single bead is\/ = 10,
b10.14, N, s = 17.4 andv = 0.012. The beads do participate to the collision phase. Equations
of motion for the beads are numerically integrated usingadsard velocity Verlet scheme [2] with
time stepit = 0.1A¢.

2.3 Confined simulations setup

We performed simulation in slitike geometry with the twollsgarallel to theOxy plane, the
z coordinate of the wall is indicated ag,. In the streaming phase standard bounce back role [4]
is applied to solvent particle. The polymer confinement imted with the repulsive LJ potential
(0w = 1ande, =1)

o 12 p 6
Vi) = dew [(zZ — 2! ) - (Zi — 2! )

+tew , zi—z, < 264, (7
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Figure 2: Left: Snapshot of a DNA modelled chain 8y = 160 immersed in the mesoscopic
solvent. Right: Gyration radiusk(; ;) with respect to the number of bead§. The symbols
represent the results of the numerical simulations whitedidished line is the theoretical prediction
for the Zimm model for a good solvent.

and zero fo(z; — z,) > 21/64,, acting on each bead. In expressios Ts the bead z coordinate and
2!, is a plane placed at a distaneg inside the wall position (i.e. the = z,, plane at which bounce
back is performed for solvent particles). Actually withghihoise a bead at the wall;(= z.,)
experienced a potential 6k; hence, due to the stiffness of LJ potential the beads hardgsdhe
wall. On the other hand the LJ potential affect only a smalb$'/¢ — 1), ~ 0.121 thick, close
to the wall resulting in the fact that the polymer is able tplexe the whole channel. Concerning
the collision phase we follow the implementation of Lamurale[13], where virtual thermalized
particles were added to the collision cells crossed by tHe wa

3 RESULTS

3.1 Unconfined simulations

In order to test our model some unconfined simulation (i.@ fiee space) have been performed
at different molecular weights, namely, = 20,40, 80, 160. Each molecule has been placed in
a cubic box with periodic boundary conditions whose lenggh svas approximately ten times the
expected equilibrium stretch. Long simulations without &rcing have been performed and some
relevant statistical observables have been collected. fil$teobservable analyzed is the gyration
radiusR, s, (Wherefs stays for free space), defined as [7]

1 &
2 _ L 2
Ry ss = N, ;«Rz R¢)7)

with R is the position of the center of mass of the chain Bydhe beads positions. In the right
panel of figure 2.3 its scaling behavior is reported as a fanaif the molecular weight, the results
show a good agreement with the theoretical expectation

Ry, s = Ny, (8)

whererv = 0.588 for a long chain with excluded volume, i.e. Zimm model for adsolvent.
To evaluate the relaxation behavior of the DNA molecule, asgonormal coordinates analysis
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Figure 3: Left: Autocorrelation time of the first Rouse mode< 1) with respect to the number of
beadsV,. The symbols represent the results of the numerical simuaktvhile the dashed line is
the theoretical prediction for the Zimm model for a good soltv Right: Normalized autocorrelation
for the first three Rouse modes rescaled with the respetta@ ¢tical predictions falv, = 40, 80.

has been been performed. Defining the Rouse modes in theietfisrersion, as in [15],

_ LS Rocos [P (- L
X, = Nb;Rlcos[N (2 2)} , 9

it is expected that the autocorrelation of the modes decgyseentially

(Xt + 1o)X, (t0)) = (X2) exp (—i) , (10)

atheoretical prediction for the values of the relaxatiomets for the Rouse model can be given as [15]

» 1/2 o
T, = | — sin7 2 = |.
P Ny Ny

Evaluating the I.h.s. of equation (10) for= 1 allows for the identification of the longest relaxation
time r;, = 7 for all the analyzed molecular weights. In figure 3 the betwaef = againstV, is
shown and once more a good agreement with the Zimm scalinggood solvent, i.er ~ N3,

is produced. For one (two) of the studied molecular weightésnely N, = 40, the behavior of
the normalized autocorrelation function (10) of the firsethRouse modeX,, is studied and the
obtained time decay, showing a good exponential fit, is tepldn figure 3. The x-axis has been
rescaled for each relaxation time with the expected scélefwavior,r, ~ p~3” [1]. The excellent
agreement at least for the early stages of relaxation, witheed of the correction proposed in [1],
should be noted.

(11)

3.2 Confined simulations

The relaxation dynamics of DNA is studied via non equililbnicuns in which the DNA molecule,
initially in elongated conformation along the direction, spontaneously coils (fig. 1) up until it
reaches an equilibrium configuration. Independent ranggmherated configurations, where the
polymer elongation iz direction was about 60% of the polymer contour lenfjth were used as
initial conditions for the runs.
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Figure 4: Left: Average polymer extensions (triangl&s,), squardY,,), circle(X.,)) as functions

of the channel height. All quantities are normalized withefrspace average extension. Right:
Normalized wall parallel polymer extension plotted as action of the inverse normalized channel
height. The dashed line is the scaling prediction 12.

The statistic of the conformation of a coiled polymer in fspace is isotropic. Hence, defined the
free space polymer extensionirdirection asX.,, ;s = max, (21, ..., zn,) —ming (x1,..., 2N, ),

i.e. the length of the projection of the polymer on the x aais] the analogous extensiorig. and
Z., inthey andz directions respectively, the isotropy in free space inglE€.,, rs) = (Yex, fs) =
(Zes,ts). This is not the case in slitike geometry, actually if theachel height: is comparable,
or smaller, than Z., rs) confinement breaks isotropy and as reported by Balducci ¢8Jabther
alterations of the dynamical behavior set in.

Figure 4 reports the average values aVa = 80 polymer extensions in all the three direction
as functions of channel height(h = 5,7, 9, 18). Both quantities are normalized with free space
average extension. It is apparent that while for strong penfient -+ < (X., ) —the z extension
is smaller than free space one, while x and y extensions igtetlgllarger, forh > 2(X., ¢5) the
isotropy is fully recovered.

According to de Gennes the behavior of a linear polymer wétsistence lengtby, and contour
length Nib,. confined in a slitlike channel with heiglit between the equilibrium length arig
can be described as follows. The molecule is seen as a chdilolo$ of dimensiorm., whose
configuration follows a two-dimensional self-avoiding walnd no hydrodynamic interaction (HI)
is assumed. The segments of the chain inside the blob follothsee-dimensional self-avoiding
walk and they interact hydrodynamically. Under these aggioms, we obtain a scaling for the
equilibrium extension with respect to heightis

<Xew,eq> Rq,fs e
o~ (S (12)
g,J S

where the values of the exponents have been obtained usinggél values /4 e 3/5 for the Flory-
Edwards exponents,, andvsp respectively. As shown in the right plot of figure 4, in our-spt
the cross-over between free-space behavior to confinelikslibne occurs for values aR, ¢s/h
larger tharD.4 i.e. for approximately the same confinement as those rapuor{€]. This plot shows
that only two of our results seems to lay in a really confinggime, in any case the comparison with
the expected scaling regime 12 is good.
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Figure 5: Left panel, time evolution of averaged extensi®p, ) of a NV, = 80 chain, the four curves
correspond td = 5,7,9, 18, the smaller channel corresponding to slower decaying tdibum
values. The inset evidences that the asymptotic value fierdiit. Right panel, time evolution of
(Z...) for the same sets of simulations.

Ensemble average estimated on at least 50 independenasionglfor each channel height, are
calculated for time evolution of polymer extension. Lefhpbof figure 5 reports the time evolution
of the ensemble average of extensi®p,. The four lines corresponds to the four channel heights
and converge to the equilibrium values, being the sloweramseciated with the narrower channel.
The inset clearly shows that the four asymptotic values dferent as expected from equilibrium
run (figure 4). The time evolution diZ..) is reported right panel of figure 5. Here the difference
among curves are more apparent, actually the smaller cheumves converge to a smaller value of
Z, and the fluctuations around this values are much more dungspect less confined cases. In
particular once the regime values is reachied (6000) theh = 5 andh = 7 extension are more or
less constant. This behavior is apparent also in a singlezaéan (data not shown). On the other
end forh = 9 andh = 18 the curves are much more rough. This effect, due to relatipebr
statistics (only 50 simulations are used for ensemble gegrs related to an higher equilibrium
value of extension variancgZ?, ) (for the four channel height from the smaller to the higher we

ex,eq

have(Z2_..) = 0.26,0.80,1.38,5.49). This effect is due to the fact that for channel smaller than

ex,eq

free space extension the movement of the polymer are much imitwenced by the confinement.

In order to better evidence the characteristics of the etiam dynamics at different channel
height, following Balducci et al. [3] we report in figure 6 tisealed squared extension along x
direction defined a§(X?2,) — (X2, ..))/L?. Inthis figure the time is set to zero when the polymer

ex,eq

extension is 30% of contour lengthX../L.) = 0.3). A sort of double regime (fast relaxation for
t < 1500 and slow relaxation near equilibriur2000 < ¢ < 4000) is observed. However it should

be noted that the tail of the curv@800 < t < 4000 is dramatically affected by small changes
in the value of(X?2, . ). This could be easily explained in terms of error propagataxctually

ex,eq
the relative error of scaled squared extension is propuatito the relative error in estimation of
(X2, ..) with a factor of (X2, _)/((X2,) — (X2, ..))- Near equilibrium this factor is very large,

ex,eq ex,eq ex,eq

actually for (X2,) = 1.1(X2, ), obtained fort ~ 5000 the factor is 10. Our accuracy in the

ex,eq
determination of X2, .. ) do not allow us corroborate or not the two scaling law pictr@posed

ex,eq

by Balducci et al. [3], hence we concentrate our attentiorthenfar from equilibrium relaxation
dynamics { < 1000).
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Figure 6: Left: Time evolution of scaled squared extensio?,) — (X2, .,))/L?2 for relaxation
dynamics of &V, = 80 polymer in three different channél & 5,9, 18). The smaller the channel the
slower the relaxation to equilibrium value. Right: Relaaattime far from equilibrium normalized
with the bulk relaxation time versus normalized inversencted height (symbols). The dashed line

represent an empirical fit with sloje32.

Though confinement effects are still not strong in this regimihen compared to [3] it is i still
possible to observe a mild change in the relaxation dynanmAcsually the scaling of the altered
relaxation time far from equilibrium shows a dependencehenchannel height which is weaker
(h=32 vs. h=95 than the one observed by [3], see right plot in figure 6. Thesalts together with
those in figure 4 corroborate the fact that our current sitrara are in a mild confinement regime
and further analysis for smaller channel heights might eduls

4 CONCLUSIONS

The dynamics of a DNA chain both in unconfined and in a slitikeannel has been studied
numerically via a novel mesoscopic approach. Results ®wuticonfined geometry show that the
present numerical model is fully able to capture the esaiethtures of polymer dynamics in a good
solvent. Moreover, this approach has been applied for thEtiime to study DNA dynamics in slit-
like geometries. Though the present analysis deals to mitdirement the present methodology
appears to be an excellent candidate to reproduce and caefient results obtained in confined
flow [3] and to test the results against existing theories.

ACKNOWLEDGEMENTS
We would like to thank Professor G. Graziani for the usefgkdssions. Simulations were in
part performed on computing resources made available byREASunder HPC Grant 2009.

References
[1] P. Ahlrichs and B. Dinweg. Simulation of a single polynebain in solution by combining
lattice Boltzmann and molecular dynamid@$ie Journal of Chemical Physick11:8225, 1999.

[2] MP Allen and DJ TildesleyComputer Simulation of Liquid©xford University Press, 1987.

[3] A. Balducci, C.C. Hsieh, and PS Doyle. Relaxation of &thed DNA in Slitlike Confinement.
Physical Review Letter99(23):238102, 2007.

[4] A. Berkenbos and C.P. Lowe. Accurate method for inclgdiolid-fluid boundary interactions
in mesoscopic model fluiddournal of Computational Physic§27):4589-4599, 2008.



[5] F. Brochard and PG De Gennes. Dynamical scaling for pelgin theta solventsMacro-
molecules10(5):1157-1161, 1977.

[6] Y.L. Chen, MD Graham, JJ de Pablo, GC Randall, M. Gupta, B8 Doyle. Conformation

and dynamics of single DNA molecules in parallel-plate slicrochannelsPhysical Review
E, 70(6):60901, 2004.

[7]1 M. Doi and S.F. EdwardsThe Theory of Polymer Dynamic®xford University Press, 1986.

[8] T. Ihle and DM Kroll. Stochastic rotation dynamics: A @ahn-invariant mesoscopic model
for fluid flow. Physical Review F53(2):20201, 2001.

[9] T. Ihle, E. Tuzel, and DM Kroll. Equilibrium calculatioof transport coefficients for a fluid-
particle model Physical Review E72(4):46707, 2005.

[10] R. M. Jendrejack, E. T. Dimalanta, D. C. Schwartz, M. Dalkam, and J. J. de Pablo. Dna
dynamics in a microchanndbhys. Rev. Lett91(3):038102, Jul 2003.

[11] R.M. Jendrejack, J.J. de Pablo, and M.D. Graham. Sttithaimulations of DNA in flow:
Dynamics and the effects of hydrodynamic interactiofifie Journal of Chemical Physics
116:7752, 2002.

[12] N. Kikuchi, CM Pooley, JF Ryder, and JM Yeomans. Tramspoefficients of a mesoscopic
fluid dynamics modelArxiv preprint cond-mat/0302452003.

[13] A. Lamura, G. Gompper, T. lhle, and DM Kroll. Multi-paete collision dynamics: Flow
around a circular and a square cylindeurophysics Letter$6(3):319-325, 2001.

[14] A. Malevanets and R. Kapral. Mesoscopic model for seflynamic.The Journal of chemical
physics110(17):8605-8613, 1999.

[15] M. Ripoll, K. Mussawisade, RG Winkler, and G. Gompper.ow-Reynolds-number hy-

drodynamics of complex fluids by multi-particle-collisi@ynamics. Europhysics Letters
68(1):106-112, 2004.



