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SUMMARY. An enhanced treatment of the solid boundaries@ppsed within the two-dimensional
SPH scheme. These are modeled by means of boundary pavticiels take the flow properties
through interpolation nodes internal to the fluid. For whahaerns the free surface, a fast and
accurate algorithm for the free-surface detection is priesewhich can be easily extended to the
three dimensional case.

1 INTRODUCTION

In the last years the use of particle methods to simulate t®oflow has been largely increased
(see e.g.[]1][12],[18]). Those methods have as a primaryfeaio needs of a structured topological
connection (grids) between the computational nodes. I fhese nodes are treated as fluid
particles followed during their motion, while their phyalgroperties evolve in time according to
the governing equations. One of the main advantage of suthoghe consist in the capability in
treat complex free-surface flow without an explicit enfangt of the dynamic condition along it.

Anyway, in order to analyze flows characterized by complese fsurface patterns (large
deformations including breaking and fragmentation of thieriface) and to face a larger range of
problems, it is required to know which particles belong te fitee surface. The detection of the free
surface, indeed, allows enforcing suitable boundary dandi along it (surface tension, isothermal
condition, etc) and, consequently, dealing witlfelient physical phenomena and flow behaviors.
In the SPH literature algorithms for the free-surface tnaglare already available (see for example
Dilts [4] and [B]) but are generally flicult to implement and time-consuming in particular in their
extension to three-dimensional simulations. In the presanmk a novel algorithm for the free-
surface detection is present&dl [6]. Such a scheme, baske praperties of the SPH kernel, is easy
to implement both in two and three dimensions, and comprtaliy cheap (CPU time required is
an order of magnitude lower than particle interaction dalon).

On the other hand, the enforcement of boundary conditiosslidh surface is usually a drawback
for the SPH schemes. In the literature several techniqueslieen proposed; the most used are the
“repulsive-forces”[[F], and the “ghost-particle$T [8]. Withe first one complex geometries can be
easily treated though this technique does not permit teectiyrevaluate local loads along the solid
surface. On the other hand, the ghost-particles approsmlisapredicting pressure loads in a very
accurate way (see e.d.1[8]) but it is suitable just for plairfaces. To overcome these drawbacks
an enhanced treatment of the solid boundaries is developedibg boundary particles capable to
model complex geometries and to accurately reproduce tsspre field.



2 THE SPH SCHEME

In the SPH method, the fluid doma® is discretized in a finite numbeX of particles
representing elementary fluid volume¥, each one with its own local madsnand other physical
properties. In this context a generic fieldat the positionr; of thei-th particle is approximated
through the convolution sum

(M) = >, W - r)dv, (1)
[

wheref; is the value off associated to the generic parti¢l@V; is its volume and finallyV(r; — rj)

is a kernel function. In practical SPH computations, theiaghof the kernel functionféects both
the CPU requirements and the stability properties of therélgm. In this work a Gaussian kernel
with a compact support has been adopted:
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wherer = ||r; — ril| is the Euclidean distance between thi& and j-th particles. The lengthh
represents a cutfradius, here set equal td&s for the classical fifth-order B-spline supp@it [9],
his calledsmoothing lengtland when it goes to zero the kernel functihbecomes a delta Dirac
function. Note that the integration of the kernel functionits support is equal to one. For the ease
of notation, hereinafter we denofé(r; — r;) simply throughW(rj).

The spatial derivatives of the fielidcan be estimated using the formuIh (1)

(VE)R) = > (V) W(ry) dV, 2)
i

After some manipulation (for more details sE€el[10]) it is §ible to move the gradient operator to
the kernel and the previous formula can be approximated by

(VH(r) = Z f; ViW(r;)dV; — f(ri)ZViW(rj)de 3)
i i

whereV; denotes the derivative with respectrtoOne can note that this formula permits to recover
exactly the null gradient of a constant function.

The largest part of the SPH schemes is built on the assumititidrihe fluid is barotropic and
weakly-compressible. The reference equations for the flmlugion are the Euler equations:

Dp
= - _ V.
Dt p u’
Du 4)
— = -V f
P Bt p+p

p=Cci(p-po),

wherep, p andu are the density, pressure and velocity fielfiss the body force fieldpg is the
density at the free surface aaglis the sound velocity. When the systeh (4) is written in th&lSP
contest, an artificial viscous term is generally added msite momentum equation for stability



reasons (see for example]11]). In this framework, we adup&PH scheme proposed by Molteni
& Colagrossi[[I2] in which a proper artificial flusive term is used into the continuity equation in
order to remove the spurious numerical high-frequencylasioins in the pressure field. Further, we
add the XSPH velocity correction (see for examplé [11]) amcati-clumping term similar to the
one proposed by Monagh&n]13]. Then, the discrete SPH scteads:

D "
§ = —pj Z(Uj —up) - ViW(r))dV; +éhag Z(//ij - ViW(r;) dv;,
i i
Du;
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Dr;
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andrij = —rj =ri —r;. The symboKV,o)i'\"LS indicates that the gradient has been evaluated through

a Moving Least Square interpolator (MLS hereinafter) (888 for more details). The symbots,
pi andu; denote the-th particle density, pressure and velocity. Thefiomnté controls the order
of magnitude of the diusive term the order of magnitude of the artificial viscous term artte
influence of the XSPH correction on the actual velocity fifigpical values aree = 0.01,¢ = 0.25
while ¢ has been set equal tol0 The anti-clumping parametgris fixed to Q1 while L is the
characteristic length of the problem at hand. The specifigoghforL is given in the section®5.

The systenids preserves the global mass and both the lineaarandar momenta. The anti-
clumping term can be regarded as an internal repulsive foeteeen fluid particles and is used
to avoid the tensile instability (seE_[15] for more detailgjinally, the difusive term inside the
continuity equation, the artificial viscosity term and th&H correction go to zero as the spatial
resolutions increases (that is, whiegoes to zero). In this way we recover the consistency with the
Euler equations.

3 THE FREE SURFACE

The algorithm for the free-surface particle detection imposed of two steps: in the first one
the properties of the renormalization matrix, defined bydtesmand Libersky[116], are used to find
particles next to the free surface. This first step stronglsrélases the number of particles that will
be processed in the second step. In the second step thelatgdsy means of geometric properties,
detects particles that actually belong to the free surfadeezaluates their local normals.

The method used to perform the first step of the algorithm wapgsed by Doring[[17]; it



exploits eigenvalues of the renormalization matrix defias{@L6]:
-1
B(r) = | Y YWim o (1) - r)av, ©®)
i

Doring showed that if the value of the minimum eigenvalu# B is greater than a proper threshold,
the particle does not belong to the free surface. In this Wwayfitst step of the algorithm gives a
first rough detection of the free surface. This operatiorehasry low computational cost especially
if the renormalization matrix is already computed in the S§tHeme, ag.g. in the formulation

proposed in[[16].

Figure 1: Sketch of the scan region used in the algorithm.

In the second step of the algorithm, a more precise and telgmtrol is performed on particles
selected during the first step in order to complete the freface detection. The proposed method is
based on the fact that, inside the fluid domain, the sum of ¢negt gradient over neighbors is very
close to zero. When a patrticle, instead, is near the freaserSuch sum is a good approximation
of the local normal to the free surface (sE€l[16]). Since tiwaiacy of the evaluation of this vector
depends on the particle disorder, it is possible to get a mocarate evaluation by using again the
renormalization matrix:

v(ri)
[v(ri)l

Once the vecton is known, it is possible to define a region of the domain likeedhe sketched in
figured, hereinafter referred to ssan region The algorithm then checks whether or not at least one
neighbor particle lies in this region. If no neighbor is folinside it, the candidate particle belongs
to the free surface.

v(r) = =B(r) ) YW(r)dvj;  n(r) = (7
j

4 THE SOLID BOUNDARY

In present work, an enhanced treatment of the solid bouesldasi proposed within two-
dimensional SPH schemes. In the specific, the solid boungargodeled through boundary
particles. Diferently from the ghost particle5l[8], the boundary partickee fixed with respect
to the solid boundary and are associated to interpolati@esiinternal to the fluid through which
they take the flow properties.

The algorithm to get the boundary particles is made in thiiiohg way. First, we assume
the body profile to be regular and to be approximated by bodiesdhrough the use of a spline.
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Figure 2: Sketches of boundary particles fdfetient solid boundary profiles.

Thanks to this, we also compute the normal and the tangehveitors along the body profile. We
assume the normal vectors to be oriented out of the fluid denie body nodes are equispaced
with a prescribed distancgs Then, using the normal vector, the body nodes are mirrotgd o
of the fluid at a distancds/2 from the body profile. Finally, through the use of a splineesv
profile is generated along which equispaced nodes withrdistisare set. Such a profile represents
a contractiofexpansion of the body profile and the nodes along it are thadsmy particles. In
the same way but using a vector opposite to the normal, eachdawoy particle is associated to an
interpolation node inside the fluid. The procedure is reg&d cover the interaction radius of the
fluid particles. In the specific, we build four curves of boandparticles out of the fluid and four
associated curves of interpolation nodes inside the flied fgyurdR). In case of singular points
along the body profile (like corners, sharp edges etc.), thequlure described above is applied
starting on each side of the singularity.

The main advantage of using the boundary particles instéatleoghost ones is that their
distribution is always uniform and does not depend on thel fharticle positions. This allows a
simple modeling of complex 2D geometries. Further, the dsenoVILS interpolator ensures an
accurate mirroring procedure of the flow quantities.

5 APPLICATIONS

In order to show the features of the proposed algorithms, evesider a dam-break problem
against a sharp-edge obstacle like the one depicted in fiurEhis test case contains the most
problematic configurations for the SPH schemes that is,ilouear profiles and conveégoncave
angles. Along the solid boundary a free-slip condition hesrbimposed and nine pressure probes
have been placed; six along the obstacle and three alonartk®bdy. This test case merges together
the need for a proper modeling of complex solid-boundarfilesoand the necessity of an accurate
description of strong flow dynamics and free-surface deédions.

In figure[d we show some snapshots of the evolution for the dagakbproblem using three
different spatial resolutions. The fluid motion is characterizg a violent fluid ejection caused by
the sharp edge (top panels of figlre 4) and by a subsequentiiopthe obstacle roof (bottom panels
of figure[4). Apart from the last instant £ 7.32 \/H—/g) which is &fected by strong fragmentation
of the flow and characterized by several small-spatial &ires, the convergence rate is very good.
This is further confirmed in the left panel of figutk 5 where tdomvergence of the pressure field
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Figure 3: Sketches of the problem. SymbBlsto Py denote the pressure probes
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Figure 4: Convergence analysis. Red ddi#gdx = 335; green dotdH/dx = 67; blue dots
H/dx = 234 [dxis the mean patrticle distance).

evaluated at the prolf® (see figurél) is shown.

On the right panel of figulld 5 a detail of the velocity field niser sharp-edge is drawn just before
the fluid ejection is generated. In order to check whethemtbakly-compressibility assumption
affects the results, in figufd 6 we draw the pressure field evedustthe probeB; P; and P3 for
two different choices of the sound velocity, As shown, the pressure signals are almostiected
by the change in the flow compressibility.

Finally, to check the accuracy of the present model, thespredfield is compared with the one
obtained through a Navier-Stokes Level-Set solver. Thiges@pproximates the flow field with a
second-order finite eierence method and an approximate projection method fortlaéan of the
Poisson equation. The free surface is modeled through d-{Satdunction that delimits the water
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Figure 5: Left panel: convergence analysis for the presgeicbevaluated at the proli®. Red line,
H/dx = 335; green lineH/dx = 67; blue lineH/dx = 134 dxis the mean particle distance). Right
panel: a sketch of the velocity field &t 2.02 +/H/g.
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Figure 6: The pressure field evaluated at the prdbe$, and P3 for two different values of the
sound velocity H/dx = 134)

field of the solution while the solid boundaries are desdittgough a second Level-Set function
that guarantees a no-slip condition as described in [18keSihe Naveir-Stokes solver simulates the
evolution of a viscous flow, we have to choose a large enough®eés number in order to ensure
the boundary layer to be thin and to have a small influence eglisbal motion. In the specific we
chooseRe= L+/gL/v = 13150 wherd. = 2.4 H is the initial water height.

In figurel we draw the comparison between the numericalisolsibbtained through the SPH
scheme and the Navier-Stokes Level-Set solver. The matchgiihe first stages of the evolution
is generally good. The mainftiérence is observed in the fluid ejection that for the Naviek&s
solver is less energetic because of the no-slip conditidrbasause of the Level-Set function which
tends to smooth the sharp profile of the fluid jet. The lastimsof the evolution can be compared
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Figure 7: Comparison between the numerical solutions neththrough the SPH scheme for
H/dx = 134 (red lines) and the Navier-Stokes Level-Set solveHfax = 100 (black lines).
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Figure 8: Comparison between the pressure field at the fPebBs and P; as obtained through
the SPH scheme (blue lines) fAlydx = 134 and the Navier-Stokes Level-Set solver (red lines) for
H/dx = 100.

only qualitatively since the SPH solver shows an high fragtaigon while the Navier-Stokes solver
keeps a smoother fluid distribution.

Finally, in figure[®, we show the comparison between the presfield as predicted by the
present SPH model and the Navier-Stokes solver at the peimse the fluid impacts against the
solid boundary (probeB;, Ps andP;). For what concerns the prolig, the numerical solutions
match very well confirming that the early stages of the flow iomojpredicted by the SPH and
Naveir-Stokes solvers are very similar. Conversely, fa phobesPs and P; the comparison is
more qualitative. This is mainly due to thefdirent evolution of the fluid (see the bottom panels of
figure[). The pressure signal predicted by the SPH solvédreapitobeds delays with respect to
the Navier-Stokes one and shows an higher peak. Such a pgadlovged by acoustic oscillations
related to the weakly-compressibility assumption and geed by a cavity closure on the roof of



the obstacle. This event appears as a narrow and sharp p#ak iail of the pressure signal of
the Navier-Stokes solver. Note that the cavity closureesponds to a singularity for the Poisson
equations solved by the Navier-Stokes Level-Set schemaallfi the right panel of figur&l8
compares the pressure signals at the pi@heThe global behavior is quite similar even though
the SPH pressure signal is more noisy. This is due to theHattte fluid jet behind the obstacle is
disturbed by several drop impacts.

6 CONCLUSIONS

Novel algorithms for the treatment of the solid boundary #mel free-surface detection are
provided. The former allows modeling complex profiles witiagp corners and edges. The latter
provides a simple and reliable method capable to follow the-Burface evolution. The algorithms
have been tested by simulating a dam-break problem agasisirp-edged obstacle and validated
through comparison with a Navier-Stokes Level-Set metihie.believe the former test-case to be
a valid benchmark for future investigations on the boundarydition implementation.
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