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SUMMARY. An enhanced treatment of the solid boundaries is proposed within the two-dimensional
SPH scheme. These are modeled by means of boundary particleswhich take the flow properties
through interpolation nodes internal to the fluid. For what concerns the free surface, a fast and
accurate algorithm for the free-surface detection is presented which can be easily extended to the
three dimensional case.

1 INTRODUCTION
In the last years the use of particle methods to simulate complex flow has been largely increased

(see e.g. [1], [2], [3]). Those methods have as a primary feature no needs of a structured topological
connection (grids) between the computational nodes. In fact, these nodes are treated as fluid
particles followed during their motion, while their physical properties evolve in time according to
the governing equations. One of the main advantage of such methods consist in the capability in
treat complex free-surface flow without an explicit enforcement of the dynamic condition along it.

Anyway, in order to analyze flows characterized by complex free surface patterns (large
deformations including breaking and fragmentation of the interface) and to face a larger range of
problems, it is required to know which particles belong to the free surface. The detection of the free
surface, indeed, allows enforcing suitable boundary conditions along it (surface tension, isothermal
condition, etc) and, consequently, dealing with different physical phenomena and flow behaviors.
In the SPH literature algorithms for the free-surface tracking are already available (see for example
Dilts [4] and [5]) but are generally difficult to implement and time-consuming in particular in their
extension to three-dimensional simulations. In the present work a novel algorithm for the free-
surface detection is presented [6]. Such a scheme, based on the properties of the SPH kernel, is easy
to implement both in two and three dimensions, and computationally cheap (CPU time required is
an order of magnitude lower than particle interaction calculation).

On the other hand, the enforcement of boundary conditions onsolid surface is usually a drawback
for the SPH schemes. In the literature several techniques have been proposed; the most used are the
“repulsive-forces” [7], and the “ghost-particles” [8]. With the first one complex geometries can be
easily treated though this technique does not permit to correctly evaluate local loads along the solid
surface. On the other hand, the ghost-particles approach allows predicting pressure loads in a very
accurate way (see e.g. [8]) but it is suitable just for plain surfaces. To overcome these drawbacks
an enhanced treatment of the solid boundaries is developed by using boundary particles capable to
model complex geometries and to accurately reproduce the pressure field.
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2 THE SPH SCHEME
In the SPH method, the fluid domainΩ is discretized in a finite numberN of particles

representing elementary fluid volumesdV, each one with its own local massdmand other physical
properties. In this context a generic fieldf at the positionri of the i-th particle is approximated
through the convolution sum

〈 f 〉(ri) =
∑

j

f j W(ri − r j) dVj (1)

wheref j is the value off associated to the generic particlej, dVj is its volume and finallyW(ri − r j)
is a kernel function. In practical SPH computations, the choice of the kernel function affects both
the CPU requirements and the stability properties of the algorithm. In this work a Gaussian kernel
with a compact support has been adopted:

W(ri − r j) = W(r) =


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1
π h2

[e−(r/h)2 −C0

1−C1

]

if r ≤ δ h

0 otherwise

C0 = e−δ
2
, C1 = C0 (1 + δ2)

wherer = ‖r j − ri‖ is the Euclidean distance between thei-th and j-th particles. The lengthδh
represents a cut-off radius, here set equal to 3h as for the classical fifth-order B-spline support [9],
h is calledsmoothing lengthand when it goes to zero the kernel functionW becomes a delta Dirac
function. Note that the integration of the kernel function on its support is equal to one. For the ease
of notation, hereinafter we denoteW(ri − r j) simply throughW(r j).

The spatial derivatives of the fieldf can be estimated using the formula (1)

〈∇ f 〉(ri) =
∑

j

(∇ f ) j W(r j) dVj (2)

After some manipulation (for more details see [10]) it is possible to move the gradient operator to
the kernel and the previous formula can be approximated by

〈∇ f 〉(ri) =
∑

j

f j ∇iW(r j)dVj − f (ri)
∑

j

∇iW(r j)dVj (3)

where∇i denotes the derivative with respect tori . One can note that this formula permits to recover
exactly the null gradient of a constant function.

The largest part of the SPH schemes is built on the assumptionthat the fluid is barotropic and
weakly-compressible. The reference equations for the flow evolution are the Euler equations:
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Dρ
Dt
= − ρ∇ · u ,

ρ
Du
Dt
= −∇p + ρ f

p = c2
0 ( ρ − ρ0 ) ,

(4)

whereρ, p andu are the density, pressure and velocity fields,f is the body force field,ρ0 is the
density at the free surface andc0 is the sound velocity. When the system (4) is written in the SPH
contest, an artificial viscous term is generally added inside the momentum equation for stability
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reasons (see for example [11]). In this framework, we adopt the SPH scheme proposed by Molteni
& Colagrossi [12] in which a proper artificial diffusive term is used into the continuity equation in
order to remove the spurious numerical high-frequency oscillations in the pressure field. Further, we
add the XSPH velocity correction (see for example [11]) and an anti-clumping term similar to the
one proposed by Monaghan [13]. Then, the discrete SPH schemereads:
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Fi j ∇iW(r j) dV j ,
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where:

ψi j = 2
(

ρ j − ρi

) r ji

|ri j |2
−

[

〈∇ρ〉MLS
i + 〈∇ρ〉MLS

j

]

, πi j =
(u j − ui) · r ji

|ri j |2
, Fi j =

h2

|ri j |2
exp

(

− 8
|ri j |2

h2

)

,

andri j = −r ji = ri − r j . The symbol〈∇ρ〉MLS
i indicates that the gradient has been evaluated through

a Moving Least Square interpolator (MLS hereinafter) (see [14] for more details). The symbolsρi ,
pi andui denote thei-th particle density, pressure and velocity. The coefficientξ controls the order
of magnitude of the diffusive term,α the order of magnitude of the artificial viscous term andǫ the
influence of the XSPH correction on the actual velocity field.Typical values areα = 0.01,ǫ = 0.25
while ξ has been set equal to 0.1. The anti-clumping parameterχ is fixed to 0.1 while L is the
characteristic length of the problem at hand. The specific choice forL is given in the section §5.

The system 5 preserves the global mass and both the linear andangular momenta. The anti-
clumping term can be regarded as an internal repulsive forcebetween fluid particles and is used
to avoid the tensile instability (see [15] for more details). Finally, the diffusive term inside the
continuity equation, the artificial viscosity term and the XSPH correction go to zero as the spatial
resolutions increases (that is, whenh goes to zero). In this way we recover the consistency with the
Euler equations.

3 THE FREE SURFACE
The algorithm for the free-surface particle detection is composed of two steps: in the first one

the properties of the renormalization matrix, defined by Randles and Libersky [16], are used to find
particles next to the free surface. This first step strongly decreases the number of particles that will
be processed in the second step. In the second step the algorithm, by means of geometric properties,
detects particles that actually belong to the free surface and evaluates their local normals.

The method used to perform the first step of the algorithm was proposed by Doring [17]; it
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exploits eigenvalues of the renormalization matrix definedas [16]:

B(ri) =
[

∑

j

∇Wj(ri) ⊗ (r j − ri) dVj

]−1

(6)

Doring showed that if the value of the minimum eigenvalueλ of B is greater than a proper threshold,
the particle does not belong to the free surface. In this way the first step of the algorithm gives a
first rough detection of the free surface. This operation hasa very low computational cost especially
if the renormalization matrix is already computed in the SPHscheme, ase.g. in the formulation
proposed in [16].

Figure 1: Sketch of the scan region used in the algorithm.

In the second step of the algorithm, a more precise and reliable control is performed on particles
selected during the first step in order to complete the free surface detection. The proposed method is
based on the fact that, inside the fluid domain, the sum of the kernel gradient over neighbors is very
close to zero. When a particle, instead, is near the free surface, such sum is a good approximation
of the local normal to the free surface (see [16]). Since the accuracy of the evaluation of this vector
depends on the particle disorder, it is possible to get a moreaccurate evaluation by using again the
renormalization matrix:

ν(ri) = −B(ri)
∑

j

∇Wj(ri) dVj ; n(ri) =
ν(ri)
|ν(ri)|

(7)

Once the vectorn is known, it is possible to define a region of the domain like the one sketched in
figure 1, hereinafter referred to asscan region. The algorithm then checks whether or not at least one
neighbor particle lies in this region. If no neighbor is found inside it, the candidate particle belongs
to the free surface.

4 THE SOLID BOUNDARY
In present work, an enhanced treatment of the solid boundaries is proposed within two-

dimensional SPH schemes. In the specific, the solid boundaryis modeled through boundary
particles. Differently from the ghost particles [8], the boundary particles are fixed with respect
to the solid boundary and are associated to interpolation nodes internal to the fluid through which
they take the flow properties.

The algorithm to get the boundary particles is made in the following way. First, we assume
the body profile to be regular and to be approximated by body nodes through the use of a spline.
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Figure 2: Sketches of boundary particles for different solid boundary profiles.

Thanks to this, we also compute the normal and the tangent unit vectors along the body profile. We
assume the normal vectors to be oriented out of the fluid domain. The body nodes are equispaced
with a prescribed distanceds. Then, using the normal vector, the body nodes are mirrored out
of the fluid at a distanceds/2 from the body profile. Finally, through the use of a spline, anew
profile is generated along which equispaced nodes with distancedsare set. Such a profile represents
a contraction/expansion of the body profile and the nodes along it are the boundary particles. In
the same way but using a vector opposite to the normal, each boundary particle is associated to an
interpolation node inside the fluid. The procedure is repeated to cover the interaction radius of the
fluid particles. In the specific, we build four curves of boundary particles out of the fluid and four
associated curves of interpolation nodes inside the fluid (see figure 2). In case of singular points
along the body profile (like corners, sharp edges etc.), the procedure described above is applied
starting on each side of the singularity.

The main advantage of using the boundary particles instead of the ghost ones is that their
distribution is always uniform and does not depend on the fluid particle positions. This allows a
simple modeling of complex 2D geometries. Further, the use of an MLS interpolator ensures an
accurate mirroring procedure of the flow quantities.

5 APPLICATIONS
In order to show the features of the proposed algorithms, we consider a dam-break problem

against a sharp-edge obstacle like the one depicted in figure3. This test case contains the most
problematic configurations for the SPH schemes that is, curvilinear profiles and convex/concave
angles. Along the solid boundary a free-slip condition has been imposed and nine pressure probes
have been placed; six along the obstacle and three along the tank body. This test case merges together
the need for a proper modeling of complex solid-boundary profiles and the necessity of an accurate
description of strong flow dynamics and free-surface deformations.

In figure 4 we show some snapshots of the evolution for the dam break problem using three
different spatial resolutions. The fluid motion is characterized by a violent fluid ejection caused by
the sharp edge (top panels of figure 4) and by a subsequent impact on the obstacle roof (bottom panels
of figure 4). Apart from the last instant (t = 7.32

√

H/g) which is affected by strong fragmentation
of the flow and characterized by several small-spatial structures, the convergence rate is very good.
This is further confirmed in the left panel of figure 5 where theconvergence of the pressure field

5



Figure 3: Sketches of the problem. SymbolsP1 to P9 denote the pressure probes
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Figure 4: Convergence analysis. Red dots,H/dx = 33.5; green dotsH/dx = 67; blue dots
H/dx= 234 (dx is the mean particle distance).

evaluated at the probeP1 (see figure 3) is shown.
On the right panel of figure 5 a detail of the velocity field nearthe sharp-edge is drawn just before

the fluid ejection is generated. In order to check whether theweakly-compressibility assumption
affects the results, in figure 6 we draw the pressure field evaluated at the probesP1 P1 andP3 for
two different choices of the sound velocity,c0. As shown, the pressure signals are almost unaffected
by the change in the flow compressibility.

Finally, to check the accuracy of the present model, the pressure field is compared with the one
obtained through a Navier-Stokes Level-Set solver. This solver approximates the flow field with a
second-order finite difference method and an approximate projection method for the solution of the
Poisson equation. The free surface is modeled through a Level-Set function that delimits the water
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panel: a sketch of the velocity field att = 2.02
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Figure 6: The pressure field evaluated at the probesP1, P2 andP3 for two different values of the
sound velocity (H/dx= 134)

field of the solution while the solid boundaries are described through a second Level-Set function
that guarantees a no-slip condition as described in [18]. Since the Naveir-Stokes solver simulates the
evolution of a viscous flow, we have to choose a large enough Reynolds number in order to ensure
the boundary layer to be thin and to have a small influence on the global motion. In the specific we
chooseRe= L

√
g L/ν = 13150 whereL = 2.4 H is the initial water height.

In figure 7 we draw the comparison between the numerical solutions obtained through the SPH
scheme and the Navier-Stokes Level-Set solver. The match during the first stages of the evolution
is generally good. The main difference is observed in the fluid ejection that for the Navier-Stokes
solver is less energetic because of the no-slip condition and because of the Level-Set function which
tends to smooth the sharp profile of the fluid jet. The last instant of the evolution can be compared
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Figure 7: Comparison between the numerical solutions obtained through the SPH scheme for
H/dx= 134 (red lines) and the Navier-Stokes Level-Set solver forH/dx= 100 (black lines).
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Figure 8: Comparison between the pressure field at the probeP1, P5 andP7 as obtained through
the SPH scheme (blue lines) forH/dx = 134 and the Navier-Stokes Level-Set solver (red lines) for
H/dx= 100.

only qualitatively since the SPH solver shows an high fragmentation while the Navier-Stokes solver
keeps a smoother fluid distribution.

Finally, in figure 8, we show the comparison between the pressure field as predicted by the
present SPH model and the Navier-Stokes solver at the pointswhere the fluid impacts against the
solid boundary (probesP1, P5 andP7). For what concerns the probeP1, the numerical solutions
match very well confirming that the early stages of the flow motion predicted by the SPH and
Naveir-Stokes solvers are very similar. Conversely, for the probesP5 and P7 the comparison is
more qualitative. This is mainly due to the different evolution of the fluid (see the bottom panels of
figure 7). The pressure signal predicted by the SPH solver at the probesP5 delays with respect to
the Navier-Stokes one and shows an higher peak. Such a peak isfollowed by acoustic oscillations
related to the weakly-compressibility assumption and generated by a cavity closure on the roof of
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the obstacle. This event appears as a narrow and sharp peak inthe tail of the pressure signal of
the Navier-Stokes solver. Note that the cavity closure corresponds to a singularity for the Poisson
equations solved by the Navier-Stokes Level-Set scheme. Finally, the right panel of figure 8
compares the pressure signals at the probeP7. The global behavior is quite similar even though
the SPH pressure signal is more noisy. This is due to the fact that the fluid jet behind the obstacle is
disturbed by several drop impacts.

6 CONCLUSIONS
Novel algorithms for the treatment of the solid boundary andthe free-surface detection are

provided. The former allows modeling complex profiles with sharp corners and edges. The latter
provides a simple and reliable method capable to follow the free-surface evolution. The algorithms
have been tested by simulating a dam-break problem against asharp-edged obstacle and validated
through comparison with a Navier-Stokes Level-Set method.We believe the former test-case to be
a valid benchmark for future investigations on the boundarycondition implementation.
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