G-exceptional vector bundles on \mathbb{P}^{2} and representations of quivers

M.C. Brambilla ${ }^{\mathrm{a}, 1}$, L. Costa ${ }^{\mathrm{b}, *, 2}$
${ }^{\text {a }}$ Dipartimento di Matematica "G. Castelnuovo", Università di Roma La Sapienza, P. le Aldo Moro 2, 00185 Roma, Italy
${ }^{\text {b }}$ Facultat de Matemàtiques, Departament d'Algebra i Geometria, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain

ARTICLE INFO

Article history:

Received 8 August 2008
Available online 19 December 2008
Communicated by Luchezar L. Avramov

Keywords:

Homogeneous vector bundles
Stable vector bundles
Exceptional bundles
Representations of quivers with relations

Abstract

It is known that the category of homogeneous bundles on \mathbb{P}^{2} is equivalent to the category of representations of a quiver with relation. In this paper we make use of this equivalence to describe a family of G-exceptional bundles on \mathbb{P}^{2} and to prove that they are stable. We also study the G-exceptionality of Fibonacci bundles on \mathbb{P}^{2}.

© 2008 Elsevier Inc. All rights reserved.

Contents

1. Introduction 1344
2. Homogeneous vector bundles and representations of quivers 1345
3. Fibonacci bundles and almost square bundles 1350
4. G-exceptional vector bundles 1353
5. Stability of the almost square bundles 1356
References 1364
[^0]
1. Introduction

The problem of classifying holomorphic vector bundles on algebraic varieties has been a central point of interest of many mathematicians during at least the last four decades.

It is well known that the set of isomorphic classes of vector bundles on an algebraic variety X cannot be parametrized by an algebraic variety. To get around this problem one is forced to consider families of (semi) stable vector bundles. It was in the way to search for stable vector bundles on \mathbb{P}^{2} that Drézet and Le Potier in [5] introduced the notion of exceptional vector bundle. Indeed, exceptional vector bundles were defined by Drézet and Le Potier as a class of vector bundles on \mathbb{P}^{2} without deformations. These bundles appear as a sort of exceptional cases in the study of the stable vector bundles on \mathbb{P}^{2}. Later, the school of Rudakov generalized the concept of exceptional bundles to \mathbb{P}^{n} and other varieties. Nowadays, there is an axiomatic presentation of exceptional vector bundles on algebraic varieties in the setting of derived categories of coherent sheaves (see for instance [3,12]).

Exceptional vector bundles are known to be stable on \mathbb{P}^{2} [5], and on \mathbb{P}^{3} [24]. See also [4,14,22] for other families of exceptional vector bundles which are known to be stable. Nevertheless, the stability of exceptional vector bundles on \mathbb{P}^{n} and more in general on an algebraic variety X is still an open and difficult problem.

Fibonacci bundles on \mathbb{P}^{n} have been recently introduced in [4] as a generalization of the Steiner exceptional bundles, namely of the exceptional bundles which admit a linear resolution. Fibonacci bundles are homogeneous and generated by mutations. In general, these bundles are not exceptional, since in particular they may have deformations (they are not rigid). Nevertheless, there exist interesting families of non-rigid bundles which do not have deformations in the category of homogeneous bundles (e.g. the so-called syzygy bundles).

This remark leads us to study a property analogous to the exceptionality in the category of homogeneous vector bundles. We will call such a notion G-exceptionality (see Definition 4.2). One of the main results of this paper is that the Fibonacci bundles on \mathbb{P}^{2} are G-exceptional.

A further natural object of investigation is the stability of G-exceptional vector bundles. In order to tackle the problem of stability in the setting of homogeneous bundles, we can take advantage of the techniques provided by the theory of representations of quivers with relations. Indeed a celebrated result due to Bondal and Kapranov [2] and Hille [8], recently investigated also by Ottaviani and Rubei [16], states that results of classification of vector bundles and results of classification of representations of quivers are closely related. In fact, there is an equivalence between the category of homogeneous bundles on \mathbb{P}^{2} and the category of representation of a certain quiver $\mathcal{Q}_{\mathbb{P}^{2}}$ with relations and this allows to translate the stability of a homogeneous vector bundle on \mathbb{P}^{2} in terms of the stability of some representations of the quiver $\mathcal{Q}_{\mathbb{P}^{2}}$.

This equivalence is the key ingredient to prove our second main result. In particular we focus on a special case of Fibonacci bundles, which we call almost square bundles. We describe explicitly the representation of the quiver associated to an almost square bundle and by studying all the possible subrepresentations we are able to prove the stability of the bundles we are dealing with. In this way we follow the approach of [15] and [21], where the authors investigate certain families of bundles whose associated representations admit a simple description. In our case the main difficulty is that the representations associated to our bundles are quite complicated and so we need several technical steps in order to get our result.

According to the results so far obtained, we are led to investigate the same kind of problems in more generality, for example for all the Fibonacci bundles on \mathbb{P}^{2} or for some special families of bundles on \mathbb{P}^{n} for $n \geqslant 2$. Some of these problems will be discussed in a forthcoming paper.

Next we outline the structure of the paper. In Section 2 we recall some preliminary definitions and results concerning homogeneous bundles and the theory of representation of quivers with relations. In particular we state the relation between homogeneous vector bundles on \mathbb{P}^{2} and representations of a certain quiver with relations $\left(\mathcal{Q}_{\mathbb{P}^{2}}, \mathcal{R}_{\mathbb{P}^{2}}\right)$. In Section 3 we introduce the principal objects that we will study in subsequent sections: the Fibonacci bundles (Definition 3.4) and the almost square bundles on \mathbb{P}^{2} (Definition 3.6). We also introduce a family of representations R_{d} of the quiver $\left(\mathcal{Q}_{\mathbb{P}^{2}}, \mathcal{R}_{\mathbb{P}^{2}}\right)$, which will be proved (in Theorem 5.1 and Proposition 5.8) to be the representations associated to almost square bundles. In Section 4, we deal with the G-exceptionality of these bundles, proving that
any almost square bundle on \mathbb{P}^{2} is simple and that any Fibonacci bundle is G-exceptional. In the proof we use cohomological methods, inspired by [4]. Section 5 is devoted entirely to prove that any almost square bundle on \mathbb{P}^{2} is stable. We first develop some technical lemmas that allows us to control the slope of the subrepresentation T of R_{d}. Then, in Theorem 5.7 , we show that any subrepresentation T of R_{d} has slope less that the slope of R_{d}. This allows us to prove in Theorem 5.10 that any almost square bundle is stable.

Notation 1.1. Throughout this paper, we will work over the complex numbers. If there is no confusion, we will denote by $H^{i}(E)$ the i th cohomology group of a vector bundle E on a smooth projective variety X and by $h^{i}(E)$ its dimension. Analogously, for any two vector bundles E and F, we will denote by $\operatorname{hom}(E, F)$ (resp. $\left.\operatorname{ext}^{i}(E, F)\right)$ the dimension of $\operatorname{Hom}(E, F)$ (resp. Ext $\left.{ }^{i}(E, F)\right)$ as complex vector spaces and we will denote by $\chi(E, F):=\sum_{i}(-1)^{i} \operatorname{ext}^{i}(E, F)$.

We will write $\mathbb{P}^{2}=\mathbb{P}\left(V^{*}\right)$ for some 3-dimensional complex vector space V and thus we will have $H^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)=V^{*}$ and, for any integer $d>0, H^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(d)\right)=S^{d} V^{*}$. We will denote $\mathcal{O}:=\mathcal{O}_{\mathbb{P}^{2}}$ when there is no confusion.

2. Homogeneous vector bundles and representations of quivers

The goal of this section is to collect the results concerning homogeneous vector bundles and representations of quivers that we will use through this paper.

Homogeneous vector bundles: We recall here some well known facts on homogeneous vector bundles on rational homogeneous varieties. See [7] for more details on representation theory. In this paper we are mostly interested in the case of complex projective spaces \mathbb{P}^{n}, and in particular in the case $n=2$, anyway the results we present here hold in much more generality.

It is well known that the complex projective space \mathbb{P}^{n} can be realized as a rational homogeneous variety G / P, where $G=S L(n+1)$ and P is a parabolic subgroup. In the sequel when we will work on \mathbb{P}^{n}, we will assume $G=S L(n+1)$.

A rank r vector bundle E on \mathbb{P}^{n} is called G-homogeneous (or simply homogeneous) if for any $g \in G$, $g^{*} E \cong E$. It is well known that any homogeneous bundle on \mathbb{P}^{n} is associated to a representation ρ of the parabolic subgroup P. The irreducible homogeneous bundles E_{λ} are defined to be the homogeneous bundles associated to the irreducible representations of P with highest weight λ.

The irreducible homogeneous bundles on the projective plane \mathbb{P}^{2} are classified and they are of the form $S^{l} Q(t)$ for some $l \in \mathbb{N}$ and $t \in \mathbb{Z}$, where $Q:=T_{\mathbb{P}^{2}}(-1)$ is the tangent bundle on \mathbb{P}^{2} twisted by $\mathcal{O}_{\mathbb{P}^{2}}(-1)$.

Remark 2.1. Any homogenous vector bundle E on \mathbb{P}^{n} admits a filtration

$$
0 \subset E_{1} \subset \cdots \subset E_{k-1} \subset E_{k}=E
$$

where each E_{i} / E_{i-1} is irreducible. The graded vector bundle $\operatorname{gr}(E):=\bigoplus_{i} E_{i} / E_{i-1}$ does not depend on the filtration.

Given a sheaf E on \mathbb{P}^{n} of $\operatorname{rank} \operatorname{rk}(E) \geqslant 1$, we define the slope of E as

$$
\mu(E):=\frac{c_{1}(E)}{\operatorname{rk}(E)},
$$

where we denote by $c_{1}(E)$ the integer such that $\mathcal{O}_{\mathbb{P}^{n}}\left(c_{1}(E)\right)$ is the first Chern class of E. A vector bundle E on \mathbb{P}^{n} is called semistable (in the sense of Mumford-Takemoto) if and only if for all nonzero subsheaves $F \subset E$ with $\operatorname{rk}(F)<\operatorname{rk}(E)$ we have

$$
\mu(F) \leqslant \mu(E)
$$

and if strict inequality holds, then E is said to be stable.

We say that a homogeneous vector bundle E on \mathbb{P}^{n} is multistable if it is the tensor product of a stable homogenous bundle and an irreducible G-representation. It follows immediately by the definition that if a vector bundle is multistable and simple, then it is also stable.

A basic result is the following criterion for the stability of homogeneous vector bundles on \mathbb{P}^{n} (see [19] and [6]):

Theorem 2.2. A homogeneous bundle E on \mathbb{P}^{n} is semistable (resp. multistable) if and only if $\mu(F) \leqslant \mu(E)$ (resp. $\mu(F)<\mu(E))$ for any homogeneous subbundle F of E associated to a subrepresentation of the P representation associated to E.

Given a vector bundle E on \mathbb{P}^{n}, we recall that it is called simple if it satisfies $\operatorname{Hom}(E, E) \cong \mathbb{C}$, and exceptional if it is simple and satisfies Ext ${ }^{i}(E, E)=0$ for any $i>0$. A vector bundle satisfying $\operatorname{Ext}^{1}(E, E)=0$ is called rigid. It is known that a rigid bundle is also homogeneous.

Given two homogenous bundles E and F on \mathbb{P}^{n}, we denote by $\operatorname{Ext}^{i}(E, F)^{G}$ the G-invariant part of the G-module $\operatorname{Ext}^{i}(E, F)$, that is the G-submodule where G acts trivially. We also denote $\chi(E, F)^{G}:=$ $\sum_{i}(-1)^{i}$ ext $^{i}(E, F)^{G}$, where ext ${ }^{i}(E, F)^{G}$ stands for the dimension of Ext ${ }^{i}(E, F)^{G}$.

Definition 2.3. Let E be a homogeneous vector bundle on an homogeneous variety G / P. We say that E is G-simple if $\operatorname{Hom}(E, E)^{G} \cong \mathbb{C}, G$-rigid if $\operatorname{Ext}^{1}(E, E)^{G}=0$ and G-exceptional if it is G-simple and $\operatorname{Ext}^{i}(E, E)^{G}=0$ for any $i>0$.

Clearly, if a vector bundle E is exceptional, then it is also G-exceptional. Of course, the converse is not true.

Remark 2.4. It is clear that by definition $\operatorname{ext}^{i}(E, E)^{G}$ equals to the number of copies of the trivial representation \mathbb{C} contained in the G-module $\operatorname{Ext}^{i}(E, E) \cong H^{i}\left(E \otimes E^{*}\right)$.

Representations of quivers: Now we will recall the definitions and state the main results that we will use concerning quivers and representations of quivers associated to homogeneous bundles. We will focus in particular on the case of \mathbb{P}^{2}.

This theory has been introduced by Bondal and Kapranov in [2] and generalized by Hille in [8] and [9]. We will adopt the same notation as in [16] and [15].

Definition 2.5. A quiver is an oriented graph $\mathcal{Q}=\left(\mathcal{Q}_{0}, \mathcal{Q}_{1}\right)$, where \mathcal{Q}_{0} is the set of vertices and \mathcal{Q}_{1} is the set of arrows. We define two maps $t, h: \mathcal{Q}_{1} \rightarrow \mathcal{Q}_{0}$ such that for any arrow $a \in \mathcal{Q}_{1}, t(a)$ is the tail of a and $h(a)$ is the head of a. A path in \mathcal{Q} is a formal composition of arrows $\beta_{m} \cdots \beta_{1}$ such that the tail of an arrow β_{k} is the head of β_{k-1}. A relation in \mathcal{Q} is a linear combination of paths of \mathcal{Q} with common head and common tail.

A representation of a quiver $\mathcal{Q}=\left(\mathcal{Q}_{0}, \mathcal{Q}_{1}\right)$ is a set of vector spaces $\left\{X_{v}\right\}_{v \in \mathcal{Q}_{0}}$ and a set of linear maps $\left\{\phi_{\beta}\right\}_{\beta \in \mathcal{Q}_{1}}$ where $\phi_{\beta}: X_{h(\beta)} \rightarrow X_{t(\beta)}$. Given a set of relation \mathcal{R} in \mathcal{Q}, a representation of a quiver \mathcal{Q} with relations \mathcal{R} is a representation of \mathcal{Q} such that

$$
\sum_{k} \lambda_{k} \phi_{\beta_{i_{1}}} \cdots \phi_{\beta_{i_{k}}}=0
$$

for any relation $\sum_{k} \lambda_{k} \beta_{i_{1}} \cdots \beta_{i_{k}} \in \mathcal{R}$. A morphism between two representations of the quiver \mathcal{Q}, $\left(X_{v}, \phi_{\beta}\right)_{v \in \mathcal{Q}_{0}, \beta \in \mathcal{Q}_{1}}$ and $\left(Y_{v}, \psi_{\beta}\right)_{v \in \mathcal{Q}_{0}, \beta \in \mathcal{Q}_{1}}$ is a set of linear maps $\left\{f_{v}: X_{v} \rightarrow Y_{v}\right\}$ such that, for every $\beta \in \mathcal{Q}_{1}$ from v to w, we have

$$
\psi_{\beta} \circ f_{v}=f_{w} \circ \phi_{\beta} .
$$

A subrepresentation of a representation $\left(X_{v}, \phi_{\beta}\right)_{v \in \mathcal{Q}_{0}, \beta \in \mathcal{Q}_{1}}$ of a quiver \mathcal{Q} is a representation $\left(Y_{v}, \psi_{\beta}\right)_{v \in \mathcal{Q}_{0}, \beta \in \mathcal{Q}_{1}}$ of \mathcal{Q} such that for any $v \in \mathcal{Q}_{0}, Y_{v} \subset X_{v}$ is a subvector space and for any arrow $\beta \in \mathcal{Q}_{1}$ from v to $w, \psi_{\beta}=\left.\phi_{\beta}\right|_{Y_{v}}$. A representation $Y=\left(Y_{v}, \psi_{\beta}\right)_{v \in \mathcal{Q}_{0}, \beta \in \mathcal{Q}_{1}}$ of a quiver \mathcal{Q} is called quotient representation of a representation $X=\left(X_{v}, \phi_{\beta}\right)_{v \in \mathcal{Q}_{0}, \beta \in \mathcal{Q}_{1}}$ of the same quiver if there is a surjective morphism from X to Y.

For a later use, we need to introduce the following terminology and notation. Notice that our definition of support is not standard.

Definition 2.6. We say that a representation $X=\left(X_{v}, \phi_{\beta}\right)_{v \in \mathcal{Q}_{0}, \beta \in \mathcal{Q}_{1}}$ has multiplicity m at a point v of \mathcal{Q}_{0} if $\operatorname{dim} X_{v}=m$ and we will denote it by m_{v}^{X}. We call support of a representation X of a quiver \mathcal{Q}, the subset of \mathcal{Q}_{0} containing the vertices where X has positive multiplicity. More precisely $\operatorname{Supp}(X):=\left\{v \in \mathcal{Q}_{0} \mid m_{v}^{X} \geqslant 1\right\}$. We call support with multiplicities, and we denote by $\operatorname{Suppm}(X)$ the data $\operatorname{Supp}(X)$ and $\left(m_{v}^{X}\right)_{v \in \operatorname{Supp}(X)}$. The vector $\left(m_{v}^{X}\right)_{v \in \operatorname{Supp}(X)}$ is usually called dimension vector of the representation.

We will use the following notation concerning the support with multiplicities of given representations of a quiver \mathcal{Q}.
(a) Given two representations X and Y, such that $m_{v}^{X} \geqslant m_{v}^{Y}$ for any $v \in \mathcal{Q}_{0}$, we denote by $X \backslash Y$ the set of vertices of the support of X with multiplicities $\left(m_{v}^{X}-m_{v}^{Y}\right)_{v \in \operatorname{Supp}(X)}$.
(b) Given two representations X and Y, we will say that a set of vertices with multiplicities, that is a subset $S \subset \mathcal{Q}_{0}$ and a collection of nonnegative integers $\left(n_{v}\right)_{v \in S}$, is the disjoint union of $\operatorname{Suppm}(A)$ and $\operatorname{Suppm}(B)$, if we have $S=\operatorname{Supp}(A) \cup \operatorname{Supp}(B)$ and for each vertex $v \in S$, we have $n_{v}=$ $m_{v}^{X}+m_{v}^{Y}$. If Z is a representation such that $\operatorname{Suppm}(Z)=S,\left(n_{v}\right)_{v \in S}$, we will also say that Z is the disjoint union of X and Y and we will write $Z=X \sqcup Y$.
(c) Given two representations X and Y, we denote by $X \cap Y$ the set of vertices with multiplicities given by the intersection $\operatorname{Supp}(X) \cap \operatorname{Supp}(Y)$ and by the multiplicities $\min \left\{m\left(A_{v}\right), m\left(B_{v}\right)\right\}$, for any $v \in \operatorname{Supp}(X) \cap \operatorname{Supp}(Y)$.

Definition 2.7. From now on we denote by $\mathcal{Q}_{\mathbb{P}^{2}}$ the quiver $\left(\mathcal{Q}_{0}, \mathcal{Q}_{1}\right)$ such that:

$$
\mathcal{Q}_{0}:=\left\{S^{l} Q(t) \mid l \in \mathbb{N}, t \in \mathbb{Z}\right\},
$$

i.e. each vertex is identified with an irreducible homogeneous bundle on \mathbb{P}^{2}. The set of arrows \mathcal{Q}_{1} is defined in the following way: there is an arrow β from the vertex $v \in \mathcal{Q}_{0}$ corresponding to $S^{l} Q(t)$ to the vertex $w \in \mathcal{Q}_{0}$ corresponding to $S^{p} Q(q)$ if and only if $\operatorname{Ext}^{1}\left(S^{l} Q(t), S^{p} Q(q)\right)^{G} \neq 0$. This happens if and only if $(p, q)=(l-1, t-1)$ or $(p, q)=(l+1, t-2)$.

It is easily seen that the quiver $\mathcal{Q}_{\mathbb{P}^{2}}$ has three connected components $\mathcal{Q}_{\mathbb{P}^{2}}^{(1)}, \mathcal{Q}_{\mathbb{P}^{2}}^{(2)}$ and $\mathcal{Q}_{\mathbb{P}^{2}}^{(3)}$, given by the congruence class modulo $\frac{3}{2}$ of the slope of the homogeneous bundles corresponding to the vertices of the connected component. Every homogeneous bundle E on \mathbb{P}^{2} splits as $E=\bigoplus_{i} E^{(i)}$ where the sum is over the connected components of $\mathcal{Q}_{\mathbb{P}^{2}}$ and $\operatorname{gr}\left(E^{(i)}\right)$ contains only irreducible vector bundles corresponding to vertices of the connected component labeled by i. For convenience, we identify this component $\mathcal{Q}_{\mathbb{P}^{2}}^{(1)}$ with the following subset of \mathbb{Z}^{2}

Definition 2.8. We define $\mathcal{R}_{\mathbb{P}^{2}}$ as the set of relations on $\mathcal{Q}_{\mathbb{P}^{2}}$ given by the commutativity of the squares. More precisely, denoting by $\beta_{w, v}$ the arrow from v to w, the relations in $\mathcal{R}_{\mathbb{P}^{2}}$ are

$$
\beta_{(x-1, y-1),(x-1, y)} \beta_{(x-1, y),(x, y)}-\beta_{(x-1, y-1),(x, y-1)} \beta_{(x, y-1),(x, y)}
$$

for all $(x, y) \in \mathcal{Q}_{\mathbb{P}^{2}}^{(i)} \in \mathbb{Z}^{2}$ for some i, such that $(x-1, y) \in \mathcal{Q}_{\mathbb{P}^{2}}$ and

$$
\beta_{(x-1, y-1),(x, y-1)} \beta_{(x, y-1),(x, y)}
$$

for all $(x, y) \in \mathcal{Q}_{\mathbb{P}^{2}}^{(i)} \in \mathbb{Z}^{2}$ for some i, such that $(x-1, y) \notin \mathcal{Q}_{\mathbb{P}^{2}}$.
Any homogeneous bundle E on \mathbb{P}^{2} defines an associated representation of the quiver $\mathcal{Q}_{\mathbb{P}^{2}}$ with relations $\mathcal{R}_{\mathbb{P}^{2}}$, in the following way:

Definition 2.9. Given a homogeneous vector bundle E on \mathbb{P}^{2}, according to Remark 2.1 we have the graded

$$
\operatorname{gr}(E)=\bigoplus_{\lambda} E_{\lambda} \otimes V_{\lambda}
$$

where $E_{\lambda}=S^{l} Q(t)$ for some $l \in \mathbb{N}$ and $t \in \mathbb{Z}$ and where V_{λ} is a k-dimensional complex vector space, being $k \geqslant 0$ the number of times that the irreducible homogenous bundle $S^{l} Q(t)$ occurs in the graded bundle $\operatorname{gr}(E)$. To the vertex of $\mathcal{Q}_{\mathbb{P}^{2}}$ corresponding to $E_{\lambda}=S^{l} Q(t)$ we associate the vector space $V_{\lambda}=\mathbb{C}^{k}$. To any arrow $\lambda \rightarrow \lambda^{\prime}$ of the quiver $\mathcal{Q}_{\mathbb{P}^{2}}$ we associate a linear map $V_{\lambda} \rightarrow V_{\lambda^{\prime}}$, defined by the G-invariant element of $\operatorname{Ext}^{1}(\operatorname{gr}(E), \operatorname{gr}(E))$ associated to the action of the nilpotent algebra on $\operatorname{gr}(E)$. See e.g. [16] for more details.

A key result is the following equivalence of categories due to Bondal-Kapranov and in a much more general setting due to Hille (see [2,8-10]).

Theorem 2.10. The category of homogeneous bundles on \mathbb{P}^{2} is equivalent to the category of finite dimensional representations of the quiver $\mathcal{Q}_{\mathbb{P}^{2}}$ with the relations $\mathcal{R}_{\mathbb{P}^{2}}$.

According to Theorem 2.10, we will identify an homogeneous bundle E on \mathbb{P}^{2} with its associated representation of the quiver $\left(\mathcal{Q}_{\mathbb{P}^{2}}, \mathcal{R}_{\mathbb{P}^{2}}\right)$. In particular we will use the name support of a vector bundle E to refer the support with multiplicities of the representation associated to E.

Remark 2.11. Notice that the first Chern class of a homogeneous vector bundle E can be computed as the sum of the first Chern classes of the irreducible bundles corresponding to the vertices of the support of E multiplied by the multiplicities. Analogously, the rank of E is the sum of the ranks of the irreducible bundles corresponding to such vertices multiplied by the multiplicities.

The previous remark lead us to pose the following definition:
Definition 2.12. We define the slope (resp. first Chern class, rank) of a set of vertices with multiplicities as the slope (resp. first Chern class, rank) of the vector bundle whose support is that set of vertices with multiplicities.

The equivalence between the category of homogeneous bundles on \mathbb{P}^{2} and the category of the representations of the quiver ($\mathcal{Q}_{\mathbb{P}^{2}}, \mathcal{R}_{\mathbb{P}^{2}}$) implies that any homogeneous subbundle F of a homogeneous bundle E on \mathbb{P}^{2} is associated to a subrepresentation of the representation associated to E. Hence in
view of Theorem 2.2 in order to prove the multistability of a homogeneous bundle E, it is enough to check that the slope of any subrepresentation of the representation associated to E is less than the slope of E.

It is immediate to deduce from the definition the following lemma,

Lemma 2.13. Let E be a homogeneous vector bundle on \mathbb{P}^{2} such that the set of vertices of the support of E is disjoint union of the sets of vertices of the supports of two representations X and Y. The following holds:
(a) If $\mu(X)=\mu(Y)$, then $\mu(E)=\mu(X)=\mu(Y)$.
(b) If $\mu(X)<\mu(Y)$, then $\mu(X)<\mu(E)<\mu(Y)$.

To construct moduli spaces of representations of quivers according to Mumford's geometric invariant theory there is a suitable notion of semistability of quivers introduced in [13] by A. King (see also $[11,20]$). This notion of semistability turns out to be equivalent to the notion of Mumford-Takemoto semistability of the bundle and in this way one gets a moduli space of homogeneous semistable bundles E with fixed $\operatorname{gr}(E)$. More precisely according to [13]:

Definition 2.14. Let $\bmod -k \mathcal{Q}$ be the abelian category of representations of a quiver \mathcal{Q} and θ : $K_{0}(\bmod -k \mathcal{Q}) \rightarrow \mathbb{R}$ an additive function on the Grothendieck group. Any representation R of \mathcal{Q} is called θ-semistable if $\theta(R)=0$ and for every subrepresentation $R^{\prime} \subseteq R, \theta\left(R^{\prime}\right) \geqslant 0$. R is called θ-stable if the only subrepresentations $R^{\prime} \subseteq R$ with $\theta\left(R^{\prime}\right)=0$ are R and 0 .

To any homogeneous bundle E with dimension vector α and

$$
\operatorname{gr}(E)=\bigoplus_{\lambda} E_{\lambda} \otimes V_{\lambda}
$$

there is associated a natural character $\mu(\alpha)=\left(\mu(\alpha)_{\lambda}\right)_{\lambda}$ given by

$$
\mu(\alpha)_{\lambda}=c_{1}(E) r k\left(E_{\lambda}\right)-r k(E) c_{1}\left(E_{\lambda}\right)
$$

This defines an additive function

$$
\mu(\alpha): K_{0}(\bmod -k \mathcal{Q}) \rightarrow \mathbb{R}
$$

such that for any F of dimension vector $\left(\beta_{\lambda}\right)_{\lambda}$,

$$
\mu(\alpha)(F)=\sum_{\lambda} \beta_{\lambda} \mu(\alpha)_{\lambda}
$$

Keeping these notations, we have

Proposition 2.15. Let E be a homogeneous vector bundle on \mathbb{P}^{2} with dimension vector α corresponding to $\operatorname{gr}(E)$. Then
(1) E is semistable if and only if the representation of $\mathcal{Q}_{\mathbb{P}^{2}}$ associated to E is $\mu(\alpha)$-semistable.
(2) E is multistable if and only if the representation of $\mathcal{Q}_{\mathbb{P}^{2}}$ associated to E is $\mu(\alpha)$-stable.

Proof. See Theorem 2.2 and [16, Theorems 7.1 and 7.2].

Remark 2.16. It is clear from the above result that the Mumford-Takemoto stability of a vector bundle E is a stronger property than the stability of the representation associated to E.

3. Fibonacci bundles and almost square bundles

In this section we introduce some families of homogeneous vector bundles and we describe the associated representation of the quiver. In particular we will recall the definition of syzygy bundles (Definition 3.1), of Fibonacci bundles (Definition 3.4) and we will introduce the almost square bundles (Definition 3.6). In next sections, we will study the G-exceptionality and the stability of such bundles.

Definition 3.1. For any integer $d>0$, we denote by $S y z_{d}$ the vector bundle on \mathbb{P}^{2} defined as the cokernel of the evaluation map $\mathcal{O}(-d) \rightarrow \operatorname{Hom}(\mathcal{O}(-d), \mathcal{O})^{*} \otimes \mathcal{O}$, that is by the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-d) \rightarrow S^{d} V \otimes \mathcal{O} \rightarrow S y z_{d} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

The vector bundle $S y z_{d}$ is called a syzygy bundle.
It is well known that syzygy bundles are stable homogeneous vector bundles: see for instance [1,17,18].

Lemma 3.2. The graded vector bundle of $S y z_{d}$ is given by

$$
\begin{equation*}
\operatorname{gr}\left(S y z_{d}\right)=\bigoplus_{i=1}^{d} S^{i} Q(i-d) \tag{3.2}
\end{equation*}
$$

and the representation of the quiver $\left(\mathcal{Q}_{\mathbb{P}^{2}}, \mathcal{R}_{\mathbb{P}^{2}}\right)$ associated to Syz $_{d}$ is given by

$$
\circ \underset{Q(-d+1)}{\leftarrow} \circ \underset{S^{2} Q(-d+2)}{\leftarrow}
$$

with all the multiplicities equal to one and all the maps different from zero.
Proof. By [15, Remark 23] it is easy to check that the graded bundle of $S^{d} V \otimes \mathcal{O}$ is

$$
\operatorname{gr}\left(S^{d} V \otimes \mathcal{O}\right)=\bigoplus_{i=0}^{d} S^{i} Q(i-d)
$$

and thus we get (3.2), since by definition $S y z_{d}$ is the quotient of $S^{d} V \otimes \mathcal{O}$ by $\mathcal{O}(-d)$. The maps in the representation are all different from zero, because otherwise the associated bundle would be decomposable, and this is impossible because $S y z_{d}$ is stable.

Remark 3.3. Any syzygy bundle on \mathbb{P}^{2} is G-exceptional. Indeed, $S y z_{d}$ is simple and hence G-simple. Moreover one can see that it is G-rigid by looking at the representation associated and observing that, since all the multiplicities in the representation are one, all the possible choices of the nonzero maps give isomorphic representations.

The syzygy bundles are special cases of the so-called Fibonacci bundles. Following [4], we call Fibonacci bundles a family of homogeneous bundles defined by means of mutations, which can be characterized from the fact that they admit a resolution whose coefficients are related to the numbers of Fibonacci. Let us recall the definition of the Fibonacci bundles.

Definition 3.4. The Fibonacci bundles (associated to the pair $\left(\mathcal{O}_{\mathbb{P}^{2}}(-d), \mathcal{O}_{\mathbb{P}^{2}}\right)$) are the vector bundles C_{k} defined recursively as follows: $C_{0}=\mathcal{O}(-d), C_{1}=\mathcal{O}$ and

$$
0 \rightarrow C_{k-1} \xrightarrow{i_{k}} C_{k} \otimes \operatorname{Hom}\left(C_{k-1}, C_{k}\right) \rightarrow C_{k+1} \rightarrow 0, \quad \text { for } k \geqslant 1,
$$

where i_{k} is the natural evaluation map. Notice that $C_{2}=S y z_{d}$. It is possible to see that $\operatorname{Hom}\left(C_{k-1}, C_{k}\right) \cong S^{d} V^{*}$ if k is odd, $\operatorname{Hom}\left(C_{k-1}, C_{k}\right) \cong S^{d} V$ if k is even.

We refer the reader to [4] for the details of the construction and the definition in a more general context (see also [23]).

Remark 3.5. We recall the following characterization which explain the relation between these bundles and the Fibonacci numbers. The Fibonacci bundle C_{k} on \mathbb{P}^{2} has the following resolution

$$
0 \rightarrow \mathcal{O}(-d)^{a_{k-1}} \rightarrow \mathcal{O}^{a_{k}} \rightarrow C_{k} \rightarrow 0
$$

where the sequence $\left\{a_{k}\right\}$ is defined as follows

$$
a_{0}=0, \quad a_{1}=1, \quad a_{k+1}=\binom{d+2}{2} a_{k}-a_{k-1} .
$$

In [4], the first author proved that these bundles are exceptional if and only if $d=1,2$, while for $d \geqslant 3$ a general deformation of C_{k} is simple, but C_{k} is not rigid.

Now we are going to concentrate our attention on the Fibonacci bundles on \mathbb{P}^{2} of type C_{3}, that we will also call almost square bundles. Also in this case, as in case of syzygy bundles, we are able to describe their corresponding representation of the quiver $\left(\mathcal{Q}_{\mathbb{P}^{2}}, \mathcal{R}_{\mathbb{P}^{2}}\right)$.

Definition 3.6. Let $d \geqslant 1$ be an integer. According to Definition 3.4, the Fibonacci bundle C_{3} is the cokernel of the natural map:

$$
\mathcal{O} \rightarrow \operatorname{Hom}\left(\mathcal{O}, S y z_{d}\right)^{*} \otimes S y z_{d} \cong S^{d} V^{*} \otimes S y z_{d}
$$

We call almost square bundle the dual of such bundles, that is the bundle $E_{d} \cong C_{3}^{*}$ given by the exact sequence

$$
\begin{equation*}
0 \rightarrow E_{d} \rightarrow S^{d} V \otimes S y z_{d}^{*} \rightarrow \mathcal{O} \rightarrow 0 \tag{3.3}
\end{equation*}
$$

The choice of the name is motivated by the shape of the associated representation, see Definition 3.8 below.

Lemma 3.7. The graded vector bundle associated to $S^{d} V \otimes S y z_{d}^{*}$ is

$$
\operatorname{gr}\left(S^{d} V \otimes S y z_{d}^{*}\right)=\bigoplus_{j=1}^{d} \bigoplus_{i=0}^{d}\left(\bigoplus_{k=0}^{\min (i, j)} S^{i+j-2 k}(k+i-2 j)\right) .
$$

Proof. By [15, Remark 23] the graded bundle of $S^{d} V \otimes \mathcal{O}$ is

$$
\operatorname{gr}\left(S^{d} V \otimes \mathcal{O}\right)=\bigoplus_{i=0}^{d} S^{i} Q(i-d)
$$

On the other hand, $\operatorname{gr}\left(S y z_{d}^{*}\right)=\operatorname{gr}\left(S y z_{d}\right)^{*}$ and thus by Lemma 3.2

$$
\operatorname{gr}\left(S y z_{d}\right)^{*}=\bigoplus_{j=1}^{d}\left(S^{j} Q(j-d)\right)^{*}=\bigoplus_{j=1}^{d} S^{j} Q(d-2 j)
$$

where the last equality follows from the fact that since Q is a rank two vector bundle with $c_{1}(Q)=1$ then $Q^{*} \cong Q(-1)$. Thus,

$$
\begin{aligned}
\operatorname{gr}\left(S^{d} V \otimes S y z_{d}^{*}\right) & =\operatorname{gr}\left(S^{d} V \otimes \mathcal{O}\right) \otimes \operatorname{gr}\left(S y z_{d}^{*}\right) \\
& =\left(\bigoplus_{i=0}^{d} S^{i} Q(i-d)\right) \otimes\left(\bigoplus_{j=1}^{d} S^{j} Q(d-2 j)\right) \\
& =\bigoplus_{j=1}^{d} \bigoplus_{i=0}^{d}\left(\bigoplus_{k=0}^{\min (i, j)} S^{i+j-2 k}(k+i-2 j)\right)
\end{aligned}
$$

where the last equality follows by Pieri's formula.
We define now a representation R_{d} of the quiver $\mathcal{Q}_{\mathbb{P}^{2}}$. In Theorem 5.1 and Proposition 5.8 below we will prove that this representation R_{d} is exactly the unique representation associated to an almost square bundle E_{d} on \mathbb{P}^{2}.

Definition 3.8. Let $R_{d}=\left(U_{i, j}^{d}, \varphi_{i, j}^{d}, \psi_{i, j}^{d}\right)$ be a representation of the quiver $\mathcal{Q}_{\mathbb{P}^{2}}$ defined as follows. The support of R_{d} is contained in a square with the vertices corresponding to $\mathcal{O}, S^{d+1} Q(d+1), S^{d}(-2 d)$, $S^{2 d} Q(-d)$. For any fixed d we label the vertices (i, j) denoting by $(1,1)$ the vertex $S^{2 d} Q(-d)$, by ($1, d+1$) the vertex $S^{d} Q(-2 d)$, by $(d, 1)$ the vertex $S^{d+1} Q(d-2)$, by $(d+1,2)$ the vertex $S^{d-1} Q(d-1)$ and by $(d+1, d+1)$ the vertex \mathcal{O}.

We denote by $U_{i, j}^{d}$ the vector space corresponding to the vertex (i, j), for $1 \leqslant i, j \leqslant d+1$. The dimensions of such vector spaces are as follows:

$$
\begin{gather*}
a_{i, j}^{d}:=\operatorname{dim} U_{i, j}^{d}= \begin{cases}i & \text { for } 1 \leqslant i \leqslant j \leqslant d, \\
j & \text { for } 1 \leqslant j<i \leqslant d,\end{cases} \\
a_{d+1, j}^{d}:=\operatorname{dim} U_{d+1, j}^{d}= \begin{cases}d-1 & \text { for } j=d+1, \\
j-1 & \text { for } 1 \leqslant j \leqslant d .\end{cases} \tag{3.4}
\end{gather*}
$$

In the picture, we have written the dimension $a_{i, j}$ of the vector space corresponding to the vertex (i, j). We denote by $\varphi_{i, j}^{d}$ the horizontal map from $U_{i, j}^{d}$ to $U_{i, j+1}^{d}$ and by $\psi_{i, j}^{d}$ the vertical map from $U_{i, j}^{d}$ to $U_{i-1, j}^{d}$. Moreover these maps satisfy the following conditions:

> any map has maximal rank,
any possible composition of maps has maximal rank,
the direct sum of the maps $\varphi_{d, 1}^{d}$ and $\psi_{d+1,2}^{d}$ has rank 2.

4. G-exceptional vector bundles

The main goal of this section if to prove the G-exceptionality of the Fibonacci bundles on \mathbb{P}^{2}. We will prove that a Fibonacci bundle on \mathbb{P}^{2} is G-exceptional, in spite it is not exceptional. Moreover, we will prove that any almost square bundle on \mathbb{P}^{2} is also simple, and not only G-simple.

Remark 4.1. Since the anticanonical line bundle on \mathbb{P}^{2} is ample, it is easy to see, by Serre duality, that any G-simple bundle E satisfies also $\operatorname{Ext}^{2}(E, E)^{G}=0$.

Theorem 4.2. Any almost square bundle E_{d} is simple and G-exceptional.
Proof. In the cases $d=1,2$, by [4] we know that E_{d} is exceptional. So, we can assume that $d \geqslant 3$. We want to prove that $\operatorname{Hom}\left(E_{d}, E_{d}\right) \cong \mathbb{C}$. Applying the functor $\operatorname{Hom}\left(-, E_{d}\right)$ to the sequence (3.3), we get

$$
\operatorname{Hom}\left(S^{d} V \otimes S y z_{d}^{*}, E_{d}\right) \rightarrow \operatorname{Hom}\left(E_{d}, E_{d}\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}, E_{d}\right)
$$

We show first that the group $\operatorname{Hom}\left(S y z_{d}^{*}, E_{d}\right)$ vanishes. Indeed applying the functor $\operatorname{Hom}\left(S y z_{d}^{*},-\right)$ to the sequence (3.3) we get

$$
0 \rightarrow \operatorname{Hom}\left(S y z_{d}^{*}, E_{d}\right) \rightarrow S^{d} V^{*} \otimes \operatorname{Hom}\left(S y z_{d}^{*}, S y z_{d}^{*}\right) \xrightarrow{f} \operatorname{Hom}\left(S y z_{d}^{*}, \mathcal{O}\right) .
$$

Since the bundle $S y z_{d}$ is simple and the map f in this sequence is the canonical isomorphism $S^{d} V^{*} \cong$ $H^{0}\left(S y z_{d}\right)$, we get $\operatorname{Hom}\left(S y z_{d}^{*}, E_{d}\right)=0$.

On the other hand, we prove now that $\operatorname{Ext}^{1}\left(\mathcal{O}, E_{d}\right) \cong \mathbb{C}$ and the simplicity of E_{d} will follow. Taking the cohomology of the sequence (3.3) we get

$$
S^{d} V \otimes H^{0}\left(S y z_{d}^{*}\right) \rightarrow H^{0}(\mathcal{O}) \rightarrow H^{1}\left(E_{d}\right) \rightarrow S^{d} V \otimes H^{1}\left(S y z_{d}^{*}\right)
$$

By the sequence in Definition 3.4 it is easy to check that

$$
H^{0}\left(S y z_{d}^{*}\right)=H^{1}\left(S y z_{d}^{*}\right)=0
$$

and so we conclude that

$$
\operatorname{Ext}^{1}\left(\mathcal{O}, E_{d}\right) \cong H^{1}\left(E_{d}\right) \cong H^{0}(\mathcal{O}) \cong \mathbb{C}
$$

This proves that $\operatorname{Hom}\left(E_{d}, E_{d}\right) \cong \mathbb{C}$. By Remark 4.1, it also follows that $\operatorname{Ext}^{2}\left(E_{d}, E_{d}\right)=0$.
We want to prove now that $\operatorname{Ext}^{1}\left(E_{d}, E_{d}\right)^{G}=0$. Since we have $\operatorname{Hom}\left(E_{d}, E_{d}\right)^{G} \cong \mathbb{C}$ and $\operatorname{Ext}^{2}\left(E_{d}, E_{d}\right)^{G}=0$ it is enough to prove that $\chi\left(E_{d}, E_{d}\right)^{G}=1$. By applying again the functor $\operatorname{Hom}\left(-, E_{d}\right)$ to the sequence (3.3), we have

$$
\chi\left(E_{d}, E_{d}\right)^{G}=\chi\left(S^{d} V \otimes S y z_{d}^{*}, E_{d}\right)^{G}-\chi\left(E_{d}\right)^{G} .
$$

We have showed that $H^{1}\left(E_{d}\right) \cong \mathbb{C}$. In the same way it is easy to prove that

$$
H^{0}\left(E_{d}\right)=H^{2}\left(E_{d}\right)=0,
$$

and so it follows that

$$
\chi\left(E_{d}\right)=\chi\left(E_{d}\right)^{G}=-1 .
$$

We want to prove now that $\chi\left(S^{d} V \otimes S y z_{d}^{*}, E_{d}\right)^{G}=0$. Applying now the functor $\operatorname{Hom}\left(S^{d} V \otimes S y z_{d}^{*},-\right)$ to the sequence (3.3), we get

$$
\chi\left(S^{d} V \otimes S y z_{d}^{*}, E_{d}\right)^{G}=\chi\left(S^{d} V \otimes S y z_{d}^{*}, S^{d} V \otimes S y z_{d}^{*}\right)^{G}-\chi\left(S^{d} V \otimes S y z_{d}^{*}, \mathcal{O}\right)^{G} .
$$

Since we know that $S y z_{d}$ is a G-exceptional bundle, we have

$$
\chi\left(S^{d} V \otimes S y z_{d}^{*}, S^{d} V \otimes S y z_{d}^{*}\right)^{G}=1
$$

Hence, it only remains to prove that $\chi\left(S^{d} V \otimes S y z_{d}^{*}, \mathcal{O}\right)^{G} \cong \chi\left(S^{d} V^{*} \otimes S y z_{d}\right)^{G}=1$. Tensoring by $S^{d} V^{*}$ the sequence defining $S y z_{d}$ we get

$$
0 \rightarrow \mathcal{O}(-d) \otimes S^{d} V^{*} \rightarrow \mathcal{O} \otimes S^{d} V \otimes S^{d} V^{*} \rightarrow S^{d} V^{*} \otimes S y z_{d} \rightarrow 0
$$

Clearly

$$
\begin{aligned}
& H^{i}\left(\mathcal{O} \otimes S^{d} V \otimes S^{d} V^{*}\right)=0 \text { for } i=1,2, \\
& H^{0}\left(\mathcal{O} \otimes S^{d} V \otimes S^{d} V^{*}\right) \cong S^{d} V \otimes S^{d} V^{*}, \\
& H^{j}\left(\mathcal{O}(-d) \otimes S^{d} V^{*}\right)=0 \text { for } i=0,1,
\end{aligned}
$$

and since $d \geqslant 3$, by Serre's duality

$$
H^{2}\left(\mathcal{O}(-d) \otimes S^{d} V^{*}\right) \cong H^{0}\left(\mathcal{O}(d-3) \otimes S^{d} V\right)^{*} \cong S^{d-3} V \otimes S^{d} V^{*}
$$

Hence, since by the Littlewood-Richardson rule, for any $d \geqslant 3$, the $S L(V)$-module $S^{d-3} V \otimes S^{d} V^{*}$ does not contain \mathbb{C} and $S^{d} V \otimes S^{d} V^{*}$ contains one copy of \mathbb{C}, we obtain

$$
H^{2}\left(\mathcal{O}(-d) \otimes S^{d} V^{*}\right)^{G}=0 \quad \text { and } \quad \operatorname{dim} H^{0}\left(\mathcal{O} \otimes S^{d} V \otimes S^{d} V^{*}\right)^{G}=1 .
$$

Then, we conclude that $\chi\left(\mathcal{O}(-d) \otimes S^{d} V^{*}\right)^{G}=0$ and $\chi\left(\mathcal{O} \otimes S^{d} V \otimes S^{d} V^{*}\right)^{G}=1$ and this implies

$$
\chi\left(S^{d} V \otimes S y z_{d}^{*}, \mathcal{O}\right)^{G}=1
$$

which concludes our proof.
Remark 4.3. The same kind of computations as in the proof of the previous theorem allows us to show that

$$
\operatorname{Ext}^{1}\left(E_{d}, E_{d}\right) \cong S^{d} V \otimes \operatorname{Ad}\left(S^{d} V\right) \otimes S^{d-3} V
$$

and for this reason E_{d} is not rigid (hence not exceptional) as soon as $d \geqslant 3$. Nevertheless $\operatorname{Ext}^{1}\left(E_{d}, E_{d}\right)$ as an $S L(V)$-module does not contain any summand isomorphic to \mathbb{C} and so we have $\operatorname{Ext}^{1}\left(E_{d}, E_{d}\right)^{G}=0$.

The following technical lemma will be useful to prove the G-exceptionality of any Fibonacci bundle on \mathbb{P}^{2}.

Lemma 4.4. For any $k \geqslant 1$, let C_{k} be a Fibonacci bundle on \mathbb{P}^{2}. Then the following holds:
(i) $\chi\left(C_{k}, C_{k}\right)^{G}=1$,
(ii) $\chi\left(C_{k} \otimes S^{d} V, C_{k-1}\right)^{G}=0$ for k odd, $\chi\left(C_{k} \otimes S^{d} V^{*}, C_{k-1}\right)^{G}=0$ for k even,
(iii) $\chi\left(C_{k-1}, C_{k} \otimes S^{d} V\right)^{G}=1$ for k odd, $\chi\left(C_{k-1}, C_{k} \otimes S^{d} V^{*}\right)^{G}=1$ for k even.

Proof. We will prove it by induction on k. Recall that $C_{0}=\mathcal{O}(-d), C_{1}=\mathcal{O}, C_{2}=S y z_{d}$ and $C_{3}=E_{d}^{*}$. It is easy to check directly that the relations (i)-(iii) hold for $k=1,2$.

Now assume that the relations hold for C_{h} and C_{h-1} with $h \leqslant k$. Assume k odd, then the Fibonacci bundle C_{k+1} is defined by the exact sequence:

$$
\begin{equation*}
0 \rightarrow C_{k-1} \rightarrow C_{k} \otimes S^{d} V \rightarrow C_{k+1} \rightarrow 0 \tag{4.1}
\end{equation*}
$$

Applying the functor $\operatorname{Hom}\left(C_{k} \otimes S^{d} V,-\right)$ to this sequence we get

$$
\chi\left(C_{k} \otimes S^{d} V, C_{k+1}\right)^{G}=\chi\left(C_{k} \otimes S^{d} V, C_{k} \otimes S^{d} V\right)^{G}-\chi\left(C_{k} \otimes S^{d} V, C_{k-1}\right)^{G}
$$

and by induction hypotheses (i) and (ii) we get

$$
\chi\left(C_{k} \otimes S^{d} V, C_{k+1}\right)^{G}=1-0=1,
$$

that is condition (iii) in case $k+1$ (even). Applying now the functor $\operatorname{Hom}\left(-, C_{k} \otimes S^{d} V\right)$ to the sequence (4.1) we get

$$
\chi\left(C_{k+1}, C_{k} \otimes S^{d} V\right)^{G}=\chi\left(C_{k} \otimes S^{d} V, C_{k} \otimes S^{d} V\right)^{G}-\chi\left(C_{k-1}, C_{k} \otimes S^{d} V\right)^{G} .
$$

Since by hypothesis of induction

$$
\chi\left(C_{k} \otimes S^{d} V, C_{k} \otimes S^{d} V\right)^{G}=1 \quad \text { and } \quad \chi\left(C_{k-1}, C_{k} \otimes S^{d} V\right)^{G}=1,
$$

we get

$$
\chi\left(C_{k+1}, C_{k} \otimes S^{d} V\right)^{G}=0
$$

which proves condition (ii) in case $k+1$ (even). Let us apply now $\operatorname{Hom}\left(C_{k-1},-\right)$ to the same sequence (4.1) and we get

$$
\chi\left(C_{k-1}, C_{k+1}\right)^{G}=\chi\left(C_{k-1}, C_{k} \otimes S^{d} V\right)^{G}-\chi\left(C_{k-1}, C_{k-1}\right)^{G}=1-1=0
$$

where we have used once again hypothesis of induction.
Finally applying the functor $\operatorname{Hom}\left(-, C_{k+1}\right)$ we get

$$
\chi\left(C_{k+1}, C_{k+1}\right)^{G}=\chi\left(C_{k} \otimes S^{d} V, C_{k+1}\right)^{G}-\chi\left(C_{k-1}, C_{k+1}\right)^{G}=1-0
$$

and this proves equality (i) in case $k+1$. The case k even is analogous.
The following result proves that any Fibonacci bundle C_{k} on \mathbb{P}^{2} is G-exceptional.
Theorem 4.5. For any $k \geqslant 1$, let C_{k} be a Fibonacci bundle on \mathbb{P}^{2}. Then the following holds:
(i) $\operatorname{hom}\left(C_{k}, C_{k}\right)^{G}=1, \operatorname{ext}^{i}\left(C_{k}, C_{k}\right)^{G}=0$ for $i=1,2$,
(ii) $\operatorname{ext}^{2}\left(C_{k} \otimes W_{k}, C_{k-1}\right)^{G}=0$,
(iii) $\operatorname{hom}\left(C_{k-1}, C_{k} \otimes W_{k}\right)^{G}=1, \operatorname{ext}^{i}\left(C_{k-1}, C_{k} \otimes W_{k}\right)^{G}=0$, for $i=1,2$,
where $W_{k} \cong S^{d} V$ if k is odd and $W_{k} \cong S^{d} V^{*}$ if k is even.
Proof. The proof is by induction on k. If $k=1,2$ it is easy to check directly the statements.
Now assume that the relations hold for C_{h} and C_{h-1} with $h \leqslant k$. Assume k odd, let C_{k+1} be the Fibonacci bundle defined by the exact sequence:

$$
0 \rightarrow C_{k-1} \rightarrow C_{k} \otimes S^{d} V \rightarrow C_{k+1} \rightarrow 0
$$

Applying the functor $\operatorname{Hom}\left(C_{k} \otimes S^{d} V,-\right)$ to this sequence and using induction hypotheses (i) and (ii) we get $\operatorname{ext}^{1}\left(C_{k} \otimes S^{d} V, C_{k+1}\right)^{G}=0$ and $\operatorname{ext}^{2}\left(C_{k} \otimes S^{d} V, C_{k+1}\right)^{G}=0$. Since by Lemma 4.4 we know that $\chi\left(C_{k} \otimes S^{d} V, C_{k+1}\right)^{G}=1$, it follows that hom $\left(C_{k} \otimes S^{d} V, C_{k+1}\right)^{G}=1$. Thus we obtain the statement (iii) in case $k+1$.

Applying now the functor $\operatorname{Hom}\left(-, C_{k} \otimes S^{d} V\right)$ to the same sequence we get

$$
\operatorname{Ext}^{1}\left(C_{k-1}, C_{k} \otimes S^{d} V\right)^{G} \rightarrow \operatorname{Ext}^{2}\left(C_{k+1}, C_{k} \otimes S^{d} V\right)^{G} \rightarrow \operatorname{Ext}^{2}\left(C_{k} \otimes S^{d} V, C_{k} \otimes S^{d} V\right)^{G}
$$

and the statement (ii) in case $k+1$ immediately follows by the assumptions (i) and (iii). Applying $\operatorname{Hom}\left(C_{k-1},-\right)$ to the sequence, we get $\operatorname{hom}\left(C_{k-1}, C_{k+1}\right)^{G}=0$ and $\operatorname{ext}^{i}\left(C_{k-1}, C_{k+1}\right)^{G}=0$ for $i=1,2$.

Finally applying the functor $\operatorname{Hom}\left(-, C_{k+1}\right)$ and using condition (iii) we obtain equality (i) in case $k+1$. The case k even is analogous.

From Theorem 4.5 we immediately get that
Corollary 4.6. For any $k \geqslant 1$, the Fibonacci bundle C_{k} on \mathbb{P}^{2} is G-exceptional.

5. Stability of the almost square bundles

The main goal of this section is to prove that any almost square bundle E_{d} on \mathbb{P}^{2} is stable. As a key ingredient, we will use the fact that we are able to describe exactly the representation of the quiver $\left(\mathcal{Q}_{\mathbb{P}^{2}}, \mathcal{R}_{\mathbb{P}^{2}}\right)$ associated to the homogeneous bundle E_{d}. Indeed we have:

Theorem 5.1. The representation of the quiver $\left(\mathcal{Q}_{\mathbb{P}^{2}}, \mathcal{R}_{\mathbb{P}^{2}}\right)$ associated to any almost square bundle E_{d} on \mathbb{P}^{2} is of type R_{d}.

Proof. Let R^{\prime} be the representation associated to E_{d} given by the correspondence stated in Definition 2.9. By Lemma 3.7, the graded vector bundle associated to $S^{d} V \otimes S y z_{d}^{*}$ is

$$
\operatorname{gr}\left(S^{d} V \otimes S y z_{d}^{*}\right)=\bigoplus_{j=1}^{d} \bigoplus_{i=0}^{d}\left(\bigoplus_{k=0}^{\min (i, j)} S^{i+j-2 k}(k+i-2 j)\right)
$$

Thus, it is easily seen that the support with multiplicities of R^{\prime} is equal to the support with multiplicities of a representation of type R_{d}. Let us adopt for the arrows and the vector spaces of R^{\prime} the same notation as in Definition 3.8.

Now we will show that the maps of the representation R^{\prime} must verify all the properties (3.5), (3.6), (3.7). In order to do this we will show that if the maps of R^{\prime} do not satisfy one of these conditions, then there exists a nontrivial subrepresentation of R^{\prime}, which is also a quotient representation of R^{\prime}. This will imply that such representation is a direct sum of R^{\prime} and so, the vector bundle E_{d} splits, and this contradicts the simplicity of E_{d}.

Assume first that R^{\prime} does not satisfy property (3.7). In that case, we can consider a subrepresentation which has multiplicity 1 at any vertex of the support of R^{\prime} and all the maps different from zero. Indeed, it is enough to take at the vertex $(d, 2)$ a 1-dimensional subspace containing the image of $\varphi_{d, 1}^{d} \oplus \psi_{d+1,2}^{d}$, and then restrict all the vector spaces at the following vertices to the corresponding images. By the commutativity of the diagram, we get everywhere 1-dimensional spaces. It is easy to see that such subrepresentation is also a quotient representation, and we are done.

Assume now that a map $\chi: V \rightarrow W$ of R^{\prime} does not have maximal rank, thus contradicting property (3.5). Assume $\operatorname{dim} V \leqslant \operatorname{dim} W$. Then if the map χ is not injective, we can take a subrepresentation supported at $0 \neq \operatorname{ker}(\chi) \subset V$ and we consequently restrict all the vector spaces of the support of R^{\prime} to the corresponding images and preimages with respect to all the maps. By the commutativity of the diagram we get a nontrivial subrepresentation, which is also a quotient representation, that is a direct summand of R^{\prime} and we get a contradiction as above. Assume now that $\operatorname{dim} V \geqslant \operatorname{dim} W$. If the map χ is not surjective, we can take a subrepresentation supported at V and at $0 \neq \operatorname{Im}(\chi) \subset W$. Restricting all the other spaces to the corresponding images and preimages, we conclude as above.

From property (3.5) it follows immediately that the property (3.6) holds for any composition of maps, except possibly for the compositions χ_{j} of the following form:

$$
\begin{gather*}
\chi_{j}:=\psi_{j, j}^{d} \circ \cdots \circ \psi_{d, j}^{d} \circ \psi_{d+1, j}^{d}: U_{d+1, j}^{d} \rightarrow U_{j-1, j}^{d} \text { for some } 2 \leqslant j \leqslant d, \text { or } \tag{5.1}\\
\chi_{d+1}:=\psi_{d+1, d+1}^{d} \circ \psi_{d, d+1}^{d}: U_{d+1, d+1}^{d} \rightarrow U_{d-1, d+1}^{d} \tag{5.2}
\end{gather*}
$$

Assume then that χ_{j} is not injective, for some $2 \leqslant j \leqslant d+1$. Then we can consider a subrepresentation of R^{\prime} supported at $0 \neq \operatorname{ker}(\chi) \subset U_{d+1, j}^{d}$. By consequently restricting all the vector spaces of the support of R^{\prime} to the images and to the preimages with respect to all the maps, we will obtain a subrepresentation, which in particular, by the commutativity of the diagram, has multiplicity 0 at the vertex $(j-1, j)$ for $2 \leqslant j \leqslant d$ and at the vertex $(d, d+1)$ for $j=d+1$. Moreover such a subrepresentation is also a quotient representation, and this concludes the proof.

The next basic lemma characterize the subrepresentations of a representation R_{d}.
Lemma 5.2. Let $\left\{b_{i, j}\right\}$ be a collection of integers for $1 \leqslant i, j \leqslant d+1$ such that: $b_{i, j} \leqslant a_{i, j}^{d}=\operatorname{dim} U_{i, j}^{d}$. Then there exists a subrepresentation of R_{d} whose support has multiplicities $\left\{b_{i, j}\right\}$ if and only if the following conditions hold:

$$
\begin{equation*}
b_{d, 2} \geqslant b_{d, 1}+b_{d+1,2} \tag{5.3}
\end{equation*}
$$

and for any (i, j) we have

$$
\begin{equation*}
b_{i, j} \leqslant b_{i, j+1} \quad \text { and } \quad b_{i, j} \leqslant b_{i-1, j}+1 \tag{5.4}
\end{equation*}
$$

Moreover the equality $b_{i, j}=b_{i-1, j}+1$ is possible only in the following cases:
(i) $i<j,(i, j) \neq(d, d+1)$,
(ii) $i=j \leqslant d-1$, if $b_{d+1, j} \leqslant b_{i-1, j}$,
(iii) $(i, j)=(d, d)$, if $b_{d+1, k} \leqslant b_{d-1, d}$, for $k=d, d+1$,
(iv) $(i, j)=(d, d+1)$, if $b_{d+1, d+1} \leqslant b_{d-1, d+1}$.

Proof. We first prove that the conditions listed in the statement are necessary. Assume that $\left\{V_{i, j}\right\}$ is the support of a subrepresentation of R_{d} and set $b_{i, j}=\operatorname{dim} V_{i, j}$.

By definition the representation R_{d} satisfies condition (3.5). In particular the horizontal maps $\varphi_{i, j}^{d}$: $U_{i, j}^{d} \rightarrow U_{i, j+1}^{d}$ are injective. The vertical maps $\psi_{i, j}^{d}: U_{i, j}^{d} \rightarrow U_{i-1, j}^{d}$ are injective if $i>j$ or if $(i, j)=$ $(d+1, d+1)$, while if $i \leqslant j$ and $i \neq d+1$ we have $\operatorname{dim} \operatorname{ker}\left(\psi_{i, j}^{d}\right)=1$. It follows immediately that the conditions (5.4) hold. Moreover (5.3) follows from the property (3.7).

Assume now that $b_{i, j}=b_{i-1, j}+1$. Clearly, since the space $V_{i, j}$ contains $\operatorname{ker}\left(\psi_{i, j}^{d}\right) \neq 0$, we have $i \leqslant j$ and $i \neq d+1$. From the property (3.6) it follows that the maps χ_{j} defined by (5.1) and (5.2) are injective. Hence it immediately follows that if $i=j \leqslant d-1$, then we have $\operatorname{dim} V_{d+1, j} \leqslant \operatorname{dim} V_{i-1, j}$, namely we have (ii). Analogously we prove case (iv). In order to check (iii), we also note that the maps $\varphi_{d+1, d}^{d}$ and $\varphi_{d, d}^{d}$ are surjective and, since the diagram is commutative, then we have $\operatorname{dim} V_{d+1, k} \leqslant$ $\operatorname{dim} V_{d-1, d}$, for $k=d, d+1$.

Now we need to check that the conditions above are also sufficient. Assume that $\left\{b_{i, j}\right\}$ is a collection of integers as above. Then it is easy to see that there exists a subrepresentation whose support has multiplicities ($b_{i, j}$). Indeed, starting from the vertex $(1, d+1)$ we can choose a subspace $V_{1, d+1}$ of $U_{1, d+1}^{d}$ of dimension $b_{1, d+1}$. Then we choose $V_{2, d+1}$ and $V_{1, d}$, such that their images are contained in $V_{1, d+1}$, and using the commutativity of the diagram we can go on and choose all the other subspaces $V_{i, j} \subseteq U_{i, j}^{d}$ of dimension $b_{i, j}$. The conditions on the integers $b_{i, j}$ allow us to choose these spaces $V_{i, j}$ for any i, j such that

$$
\varphi_{i, j}\left(V_{i, j}\right) \subseteq V_{i, j+1} \quad \text { and } \quad \psi_{i, j}\left(V_{i, j}\right) \subseteq V_{i-1, j}+1
$$

and

$$
\operatorname{ker}\left(\psi_{i, j}^{d}\right) \subseteq V_{i, j}
$$

whenever $b_{i, j}=b_{i-1, j}+1$. This clearly implies that the collection $\left\{V_{i, j}\right\}$ can be the support of a subrepresentation of R_{d}.

Now we are going to state some definitions and prove some technical lemmas that we will needed later on.

Definition 5.3. Let S_{d} be the representation of $\left(\mathcal{Q}_{\mathbb{P}^{2}}, \mathcal{R}_{\mathbb{P}^{2}}\right)$ such that the support of S_{d} is the support of R_{d} with all multiplicities equal to one and all the maps are nonzero constants (and thus equal to one). For any $2 \leqslant k \leqslant d$, let P_{d}^{k} be the representation of ($\mathcal{Q}_{\mathbb{P}^{2}}, \mathcal{R}_{\mathbb{P}^{2}}$) such that the support of P_{d}^{k} is the support of S_{d} with the following multiplicities. For any vertex (i, j) :

$$
m(i, j)= \begin{cases}1, & i=1 \\ 1, & j=1 \\ 1, & i=d+1,2 \leqslant j \leqslant k \\ 2 & \text { elsewhere }\end{cases}
$$

Remark 5.4.

(a) It follows from [15, Lemma 40] that the vector bundle F_{d} associated to S_{d} is multistable, that is, that any subrepresentation of S_{d} has slope less than the slope of S_{d}.
(b) By [15, Remark 23 and the Four Terms Lemma], the vector bundle F_{d} can be seen as the kernel of the natural projection

$$
S^{2 d, d} V \otimes \mathcal{O} \xrightarrow{\pi} S^{d} Q(d)
$$

where $S^{2 d, d} V$ is an irreducible Schur representation (see for instance [7]).

With the above notations

Lemma 5.5. For any integer $d>0$, the following holds:
(a) $\operatorname{rk}\left(R_{d}\right)=\binom{d+2}{2}^{2}-\binom{d+2}{2}-1$ and $c_{1}\left(R_{d}\right)=-\frac{d(d+1)(d+2)}{2}$.
(b) $\operatorname{rk}\left(S_{d}\right)=d(d+1)(d+2)$ and $c_{1}\left(S_{d}\right)=-\frac{3}{2} d(d+1)$.
(c) $\operatorname{rk}\left(P_{d}^{k}\right)=d\left((d+1)(d+2)+\frac{(d-1)(2 d+1)}{2}\right)+\frac{(d-k)(d-k+1)}{2}$ and

$$
c_{1}\left(P_{d}\right)=-\frac{3 d(d+1)}{2}-\frac{d(d-1)(d+1)}{2}+\frac{(d-k)(d-k+1)(d-k-1)}{2}
$$

(d) $\mu\left(R_{d-1}\right)<\mu\left(R_{d}\right)<\mu\left(S_{d}\right)$.
(e) $\mu\left(P_{d}^{k}\right)<\mu\left(R_{d}\right)$ for $d \geqslant 2$ and $2 \leqslant k \leqslant d$.

Proof. Once we have proved (a)-(c), the items (d) and (e) follow after a straightforward computation, keeping in mind that, by definition, given a representation R we have $\mu(R)=\frac{c_{1}(R)}{\operatorname{rk}(R)}$. So, we will prove the first three items and we left the proof of the remaining to the reader.
(a) By Theorem 5.1 we have $\operatorname{rk}\left(R_{d}\right)=\operatorname{rk}\left(E_{d}\right)$ and $c_{1}\left(R_{d}\right)=c_{1}\left(E_{d}\right)$. Recall that the vector bundle E_{d} is given by the short exact sequence

$$
\begin{equation*}
0 \rightarrow E_{d} \rightarrow S^{d} V \otimes S y z_{d}^{*} \rightarrow \mathcal{O} \rightarrow 0 \tag{5.5}
\end{equation*}
$$

where $S y z_{d}$ is the syzygy bundle on \mathbb{P}^{2} defined by the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-d) \rightarrow S^{d} V \otimes \mathcal{O} \rightarrow S y z_{d} \rightarrow 0 \tag{5.6}
\end{equation*}
$$

From the exact sequence (5.6) we get that

$$
\operatorname{rk}\left(S y z_{d}\right)=\binom{d+2}{2}-1 \quad \text { and } \quad c_{1}\left(S y z_{d}\right)=d
$$

Using this equalities together with the exact sequence (5.5) we obtain:

$$
\operatorname{rk}\left(R_{d}\right)=\binom{d+2}{2} \operatorname{rk}\left(S y z_{d}^{*}\right)-1=\binom{d+2}{2}^{2}-\binom{d+2}{2}-1
$$

and

$$
c_{1}\left(R_{d}\right)=\binom{d+2}{2} c_{1}\left(S y z_{d}^{*}\right)=-d \frac{(d+1)(d+2)}{2}
$$

(b) First of all notice that

$$
R_{d}=R_{d-1} \sqcup S_{d}
$$

from which we deduce that

$$
\operatorname{rk}\left(S_{d}\right)=\operatorname{rk}\left(R_{d}\right)-\operatorname{rk}\left(R_{d-1}\right) \quad \text { and } \quad c_{1}\left(S_{d}\right)=c_{1}\left(R_{d}\right)-c_{1}\left(R_{d-1}\right)
$$

Thus, using (a) we have

$$
\operatorname{rk}\left(S_{d}\right)=\binom{d+2}{2}^{2}-\binom{d+2}{2}-1-\binom{d+1}{2}^{2}+\binom{d+1}{2}+1=d(d+1)(d+2)
$$

and

$$
c_{1}\left(S_{d}\right)=-d \frac{(d+1)(d+2)}{2}+(d-1) \frac{(d+1)(d)}{2}=-\frac{3}{2} d(d+1) .
$$

(c) Let R be the rectangle of base $d-1$, height $d-2$ and $Q(-2)$ as the highest vertex of the lefthand side and let R^{\prime} be the rectangle of base $d-k-1$, height 0 and \mathcal{O} as the highest vertex of the left-hand side (i.e. R^{\prime} is the left-hand side of the first row of R_{d} of length $d-k-1$). By construction

$$
P_{d}^{k}=S_{d} \sqcup R \sqcup R^{\prime}
$$

and therefore

$$
\begin{align*}
& r k\left(P_{d}^{k}\right)=r k\left(S_{d}\right)+r k(R)+r k\left(R^{\prime}\right) \tag{5.7}\\
& c_{1}\left(P_{d}^{k}\right)=c_{1}\left(S_{d}\right)+c_{1}(R)+c_{1}\left(R^{\prime}\right) \tag{5.8}
\end{align*}
$$

By [15, Lemma 28],

$$
\begin{gathered}
r k(R)=d(d-1)\left(d+\frac{1}{2}\right) \quad \text { and } \quad c_{1}(R)=\frac{-d(d-1)(d+1)}{2}, \\
r k\left(R^{\prime}\right)=\frac{(d-k)(d-k+1)}{2} \text { and } c_{1}(R)=\frac{(d-k)(d-k+1)(d-k-1)}{2} .
\end{gathered}
$$

Now, we conclude by substituting these equalities together with (b) in (5.8) and in (5.7).
Lemma 5.6. For any integer d and any proper subrepresentation G of S_{d}, the following inequality holds

$$
\mu(G)<\mu\left(R_{d}\right) .
$$

Proof. Denote by p and q the vertex corresponding to $S^{d-1} Q(d-1)$ and $S^{d+1} Q(d-2)$ respectively and we will denote by the same letter the corresponding representation with one vertex of multiplicity one. By Lemma 5.5 ,

$$
\mu\left(S_{d}\right)=-\frac{3}{2} \frac{d(d+1)}{d(d+1)(d+2)} .
$$

Therefore, since $\operatorname{rk}\left(S^{j} Q(l)\right)=j+1$ and $c_{1}\left(S^{j} Q(l)\right)=\frac{(2 l+j)(j+1)}{2}$ we get

$$
\begin{gathered}
\mu\left(S_{d} \backslash p\right)=\frac{-3 d^{2}}{d\left(d^{2}+3 d+1\right)}, \\
\mu\left(S_{d} \backslash q\right)=\frac{-3\left(d^{2}+d-1\right)}{(d+2)\left(d^{2}+d-1\right)}, \\
\mu\left(S_{d} \backslash(p \sqcup q)\right)=-\frac{3}{2} \frac{\left(3 d^{2}+d-2\right)}{\left(d^{3}+3 d^{2}-2\right)}
\end{gathered}
$$

and from these equalities together with Lemma $5.5(1)$ it is easy to see that

$$
\begin{equation*}
\mu\left(S_{d} \backslash p\right)<\mu\left(R_{d}\right), \quad \mu\left(S_{d} \backslash q\right)<\mu\left(R_{d}\right) \quad \text { and } \quad \mu\left(S_{d} \backslash(p \sqcup q)\right)<\mu\left(R_{d}\right) \tag{5.9}
\end{equation*}
$$

Now let G be a subrepresentation of S_{d}. If G contains p and q then $G=S_{d}$ and it is no a proper subrepresentation. If $G=S_{d} \backslash p$ or $G=S_{d} \backslash q$ or $G=S_{d} \backslash(p \sqcup q)$, then by (5.9) and Lemma 5.5(4) we get

$$
\mu(G)<\mu\left(R_{d}\right)<\mu\left(S_{d}\right)
$$

and we are done. If $G \varsubsetneqq S_{d} \backslash(p \sqcup q)$, then the inequality

$$
\mu(G)<\mu\left(R_{d}\right)<\mu\left(S_{d}\right)
$$

follows from the fact that by [15, Theorem 36], $S_{d} \backslash(p \sqcup q)$ is stable and hence

$$
\mu(G)<\mu\left(S_{d} \backslash(p \sqcup q)\right)<\mu\left(S_{d}\right)
$$

Now we are ready to prove our main technical result.

Theorem 5.7. Given any subrepresentation T of R_{d}, we have $\mu(T)<\mu\left(R_{d}\right)$.
Proof. We will proceed by induction on $d \geqslant 1$. By definition, the representation R_{1} is the following:

$$
\stackrel{\circ}{Q(-2)}{\stackrel{\circ}{S^{2} Q(-2)}}_{\circ}
$$

Then the unique subrepresentation T of R_{1} is given by the vertex corresponding to $Q(-2)$ and we immediately check that $\mu(T)=-\frac{3}{2}<\mu\left(R_{1}\right)=-\frac{3}{5}$.

Assume now that R_{d-1} satisfies the statement for $d \geqslant 2$ and we are going to prove that the same is true for R_{d}.

Now, let T be a subrepresentation of R_{d} and denote by $V_{i, j}$, for $1 \leqslant i, j \leqslant d+1$, the vector spaces where T is supported. We consider the following three cases A, B and C according to the shape of T.
Case A. There exists at least a pair (i, j), for $1 \leqslant i, j \leqslant d+1$ and $(i, j) \neq(d+1,1)$, such that $V_{i, j}=0$, and for any $2 \leqslant i \leqslant d+1$ and $1 \leqslant j \leqslant d+1$, if $V_{i, j} \neq 0$, then we have $V_{i-1, j} \neq 0$.

Let T_{1} be a representation whose support with multiplicities is $T \cap S_{d}$ and with all nonzero maps.

Claim 1. T_{1} is a proper subrepresentation of S_{d}.
Proof. Since all the multiplicities of vertices of S_{d} are one, it is enough to prove that if $V_{i, j} \neq 0$, then $V_{i-1, j} \neq 0$ and $V_{i, j+1} \neq 0$. But this is clear since T is a subrepresentation of R_{d} and we are under the hypotheses of case A. The fact that T_{1} is proper is a direct consequence of the assumptions in this case.

Claim 2. There exists a subrepresentation of R_{d-1} supported on $T_{2}:=T \backslash T_{1}$
Proof. We denote by $b_{i, j}$ the multiplicities $m_{i, j}^{T_{2}}$ of T_{2} at each vertex (i, j) Notice that

$$
b_{i, j} \leqslant a_{i-1, j-1}^{d-1}=\operatorname{dim} U_{i-1, j-1}^{d-1}=\operatorname{dim} U_{i, j}^{d}-1 .
$$

It is easy to check that all the other conditions of Lemma 5.2 are also satisfied. Hence, by Lemma 5.2 there exists a subrepresentation of R_{d-1} whose support with multiplicities is T_{2}.

Since $T=T_{1} \sqcup T_{2}$, if $\mu\left(T_{1}\right) \leqslant \mu\left(T_{2}\right)$, by Lemma 2.13 we get

$$
\mu\left(T_{1}\right) \leqslant \mu(T) \leqslant \mu\left(T_{2}\right)
$$

On the other hand, since by Claim 2, T_{2} is a subrepresentation of R_{d-1} and by hypothesis of induction R_{d-1} is stable, we have

$$
\mu\left(T_{2}\right)<\mu\left(R_{d-1}\right) .
$$

Thus,

$$
\mu(T)<\mu\left(R_{d-1}\right)<\mu\left(R_{d}\right)
$$

where the last inequality follows from Lemma $5.5(\mathrm{~d})$.
Assume now $\mu\left(T_{2}\right)<\mu\left(T_{1}\right)$. Then, by Lemma 2.13, we have

$$
\mu\left(T_{2}\right)<\mu(T)<\mu\left(T_{1}\right) .
$$

On the other hand, by Claim $1, T_{1}$ is a proper subrepresentation of S_{d}. Thus, by Lemma 5.6

$$
\mu(T)<\mu\left(T_{1}\right)<\mu\left(R_{d}\right)
$$

and this finishes the case A.
Case B. There exists at least a pair (i, j), for $1 \leqslant i, j \leqslant d+1$ and $(i, j) \neq(d+1,1)$, such that $V_{i, j}=0$, and there exists at least a $V_{i, j} \neq 0$, such that $V_{i-1, j}=0$.

We split this case in two further subcases:
Case B1. Assume $V_{1, j}=0$ for all $1 \leqslant j \leqslant d+1$.
In that case, we prove the following claim.
Claim 3. T is a subrepresentation of R_{d-1}.
Proof. Indeed it is easy to check that $V_{i, 1}=0$ for any i and since $V_{1,2}=0$ we also have $V_{d+1,2}=0$. Moreover, if $\operatorname{dim}\left(V_{i, j}\right)=a_{i, j}^{d}$, then we would have $\operatorname{dim}\left(V_{1, j}\right)=1$ which is a contradiction. So we have $\operatorname{dim}\left(V_{i, j}\right)<a_{i, j}^{d}$. Thus the support of T is contained in the support of R_{d-1}. Now it is easy to see that T is a subrepresentation of R_{d-1} by using Lemma 5.2.

By hypothesis of induction R_{d-1} is stable, thus by Claim 3,

$$
\mu(T)<\mu\left(R_{d-1}\right)<\mu\left(R_{d}\right)
$$

where the last inequality follows form Lemma 5.5(d).

Case B2. Assume that there exists a $V_{1, j} \neq 0$.
Let i_{0} be the maximal $i \geqslant 1$ such that $V_{i, 1} \neq 0$ or let $i_{0}=1$ if for any $i, V_{i, 1}=0$. Let T_{1} be the maximal staircase contained in $T \backslash\left(S_{d-i_{0}} \cap T\right)$. Clearly T_{1} is a proper subrepresentation of S_{d}.

Claim 4. There exists a subrepresentation of R_{d-1} whose support with multiplicities is $T_{2}:=T \backslash T_{1}$.
Proof. Denote by $b_{i, j}$ the multiplicities of T_{2}. First of all notice that

$$
b_{1, j}=0 \quad \text { and } \quad b_{i, 1}=0
$$

for any i, j. Indeed if $b_{1, j}=1$, then it would implies that the staircase T_{1} has multiplicity 0 at the vertex $(1, j)$. But it is easy to see that this would contradict the maximality of the staircase T_{1}. On the other hand, we also have

$$
b_{d+1,2}=0 .
$$

Indeed, if $b_{d+1,2} \neq 0$ then we would have in particular $\operatorname{dim} V_{d+1,2}=1$ but this is impossible since we are under the assumptions of case B.

Assume now that $b_{i, j}=a_{i, j}^{d}$, which implies $\operatorname{dim}\left(V_{i, j}\right)=a_{i, j}^{d}$. Then we would have

$$
\operatorname{dim} V_{h k}=a_{h k}^{d}
$$

for any $1 \leqslant h \leqslant i$ and $j \leqslant k \leqslant d+1$. But this in particular implies that the vertex (i, j) is contained in the staircase T_{1} and so $b_{i, j}=a_{i, j-1}^{d}$ which is a contradiction.

Thus, the support of T_{2} is contained in the support of R_{d-1}. In addition, it can be easily checked that all the assumptions of Lemma 5.2 are satisfied. Hence there is a subrepresentation of R_{d-1} whose support with multiplicities is T_{2} and Claim 4 is proved.

Since $T=T_{1} \sqcup T_{2}$, with T_{1} a proper subrepresentation of S_{d} and T_{2} a subrepresentation of R_{d-1} we conclude with the same argument as in case A that

$$
\mu(T)<\mu\left(R_{d}\right) .
$$

Case C. For any pair (i, j), for $1 \leqslant i, j \leqslant d+1$ and $(i, j) \neq(d+1,1)$, we have $V_{i, j} \neq 0$.
First of all notice that $P_{d}^{d} \subset T$. Denote by $T_{1}=T \cap P_{d}^{1}$. It is immediate to observe that there exists some $k, 1 \leqslant k \leqslant d$ such that

$$
T_{1}=P_{k}^{d} .
$$

Thus, by Lemma 5.5(e)

$$
\mu\left(T_{1}\right)<\mu\left(R_{d}\right)
$$

Claim 5. There exists a subrepresentation of R_{d-1} whose support with multiplicities is $T_{2}:=T \backslash T_{1}$.
Proof. It is clear that the support of T_{2} is contained in the support of R_{d-1}. On the other hand, notice that since $T_{1}=P_{d}^{k}$, then $\operatorname{dim} V_{d+1, j}=1$, for any $2 \leqslant j \leqslant k+1$. Hence, it is easy to check that all the conditions in Lemma 5.2 are satisfied by the multiplicities of T_{2}.

Once again, since $T=T_{1} \sqcup T_{2}$, with T_{2} a subrepresentation of R_{d-1} and $\mu\left(T_{1}\right)<\mu\left(R_{d}\right)$, we conclude as in the above cases A and B . This concludes the proof of the theorem.

A first consequence of the previous theorem is that the properties of a representation of type R_{d} define a unique (up to isomorphism) representation. This implies, by Theorem 5.1, that any representation of type R_{d} is isomorphic to the representation associated to the almost square bundle E_{d}.

Proposition 5.8. Any two representations R and R^{\prime} of type R_{d} are isomorphic.
Proof. Notice that, since the invariant Euler characteristic is a topological invariant and hence only depends on the support of the representation, we have

$$
\chi\left(R, R^{\prime}\right)^{G}=\chi(R, R)^{G}=\chi\left(E_{d}, E_{d}\right)^{G}=1
$$

where the last equality follows from Theorem 4.2 . Let us denote by E (resp. E^{\prime}) the homogeneous vector bundle associated to R (resp. R^{\prime}). They have the same rank and Chern classes. Notice that E and E^{\prime} are multistable bundles by Theorems 2.2 and 5.7. Hence, by Serre duality, we have

$$
\operatorname{ext}^{2}\left(R, R^{\prime}\right)^{G}=\operatorname{ext}^{2}\left(E, E^{\prime}\right)^{G}=\operatorname{hom}\left(E^{\prime}, E(-3)\right)^{G}=0
$$

Then, it follows that $\operatorname{hom}\left(R, R^{\prime}\right)^{G} \geqslant 1$ and thus there exists a nontrivial morphism of representations $f: R \rightarrow R^{\prime}$. This morphism must be an isomorphism since otherwise the subrepresentations $\operatorname{ker}(f)$ or $\operatorname{Im}(f)$ would contradict Theorem 5.7 for R or R^{\prime}.

Remark 5.9. The previous proposition also implies that the moduli space of homogeneous bundles containing an almost square bundle is a reduced point. For more details on the moduli problem of homogeneous bundles see [13], and [16, Section 7].

We are finally in a position to prove the main result of this section.
Theorem 5.10. Any almost square bundle on \mathbb{P}^{2} is stable.
Proof. Since by Theorem $4.2 E_{d}$ is simple, it is enough to prove that it is multistable. By Proposition 5.8 , we know that R_{d} is the representation of the quiver $\mathcal{Q}_{\mathbb{P}^{2}}$ associated to E_{d}, hence by Theorem 2.2 to prove that E_{d} is multistable it is enough to see that for any subrepresentation T of $R_{d}, \mu(T)<\mu\left(R_{d}\right)$. But this is true by Theorem 5.7 and this concludes the proof.

Acknowledgments

We would like to thank Giorgio Ottaviani for many useful discussions. The first author is grateful to the University of Barcelona, and in particular to Rosa Maria Miró-Roig, for inviting her to attend the Semester on Moduli Spaces 2008.

References

[1] E. Ballico, On the stability of certain higher rank bundles on \mathbb{P}^{n}, Rend. Circ. Mat. Palermo (2) 41 (1992) 309-314.
[2] A.I. Bondal, M.M. Kapranov, Homogeneous bundles, in: Seminar Rudakov, Helices and Vector Bundles, in: London Math. Soc. Lecture Note Ser., vol. 148, 1990, pp. 45-55.
[3] A.I. Bondal, Representation of associative algebras and coherent sheaves, Math. USSR Izv. 34 (1990) 23-42.
[4] M.C. Brambilla, Cokernel bundles and Fibonacci bundles, Math. Nachr. 281 (2008) 499-516.
[5] J.M. Drezet, J. Le Potier, Fibrés stables et fibrés exeptionnels sur le plan projectif, Ann. Sci. École Norm. Sup. 18 (1985) 193-244.
[6] S. Faini, On simple and stable homogeneous bundles, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 9 (1) (2006) 51-67.
[7] W. Fulton, J. Harris, Representation Theory, A First Course, Geom. Topol. Monogr., vol. 129, Springer-Verlag, New York, 1991.
[8] L. Hille, Homogeneous vector bundles and Koszul algebras, Math. Nachr. 191 (1998) 189-195.
[9] L. Hille, Small homogeneous vector bundles, PhD thesis, Bielefeld, 1994.
[10] L. Hille, Examples of Distinguished Tilting Sequences on Homogeneous Varieties, Canadian Math. Soc. Conference Proceedings, vol. 18, 1996, pp. 317-342.
[11] L. Hille, J.A. de la Peña, Stable representations of quivers, J. Pure Appl. Algebra 172 (2002) 205-224.
[12] M.M. Kapranov, On the derived category of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988) 479508.
[13] A.D. King, Moduli of representations of finite-dimensional quiver algebras, Q. J. Math. Oxford Ser. (2) 45 (1994) 515-530.
[14] R.M. Miró-Roig, H. Soares, The stability of exceptional vector bundles on complete intersection 3-folds, Proc. Amer. Math. Soc. 136 (11) (2008) 3751-3757.
[15] G. Ottaviani, E. Rubei, Resolutions of homogeneous bundles on \mathbb{P}^{2}, Ann. Inst. Fourier 55 (2005) 973-1015.
[16] G. Ottaviani, E. Rubei, Quivers and the cohomology of homogeneous vector bundles, Duke Math. J. 132 (2006) 459-508.
[17] R. Paoletti, Stability of a class of homogeneous vector bundles on \mathbb{P}^{n}, Boll. Unione Mat. Ital. Sez. A (7) 9 (1995) 329-343.
[18] S. Ramanan, Holomorphic vector bundles on homogeneous spaces, Topology 5 (1966) 159-177.
[19] R. Rohmfeld, Stability of homogeneous vector bundles on \mathbb{P}^{n}, Geom. Dedicata 38 (1991) 159-166.
[20] A. Rudakov, Stability for an abelian category, J. Algebra 197 (1) (1997) 231-245.
[21] E. Rubei, Stability of homogeneous bundles on \mathbb{P}^{3}, Arxiv preprint, http://arxiv.org/abs/0712.3031, 2007.
[22] H. Soares, Steiner bundles on the hyperquadric $Q_{n} \subset \mathbb{P}^{n+1}, n \geqslant 3$, Comm. Algebra 35 (12) (2007) 4116-4136.
[23] H. Soares, Steiner bundles on algebraic varieties, PhD thesis, 2008.
[24] S.K. Zube, The stability of exceptional vector bundles on three dimensionla projective spaces, in: Seminar Rudakov, Helices and Vector Bundles, in: London Math. Soc. Lecture Note Ser., vol. 148, 1990, pp. 115-117.

[^0]: * Corresponding author.

 E-mail addresses: brambilla@math.unifi.it, brambilla@mat.uniroma1.it (M.C. Brambilla), costa@ub.edu (L. Costa).
 ${ }^{1}$ Partially supported by MIUR and by the project Ingenio Mathematica (i-MATH).
 2 Partially supported by MTM2007-61104.

