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1. Introduction

The problem of classifying holomorphic vector bundles on algebraic varieties has been a central
point of interest of many mathematicians during at least the last four decades.

It is well known that the set of isomorphic classes of vector bundles on an algebraic variety X
cannot be parametrized by an algebraic variety. To get around this problem one is forced to con-
sider families of (semi) stable vector bundles. It was in the way to search for stable vector bundles
on P2 that Drézet and Le Potier in [5] introduced the notion of exceptional vector bundle. Indeed,
exceptional vector bundles were defined by Drézet and Le Potier as a class of vector bundles on P2

without deformations. These bundles appear as a sort of exceptional cases in the study of the stable
vector bundles on P2. Later, the school of Rudakov generalized the concept of exceptional bundles to
Pn and other varieties. Nowadays, there is an axiomatic presentation of exceptional vector bundles on
algebraic varieties in the setting of derived categories of coherent sheaves (see for instance [3,12]).

Exceptional vector bundles are known to be stable on P2 [5], and on P3 [24]. See also [4,14,22] for
other families of exceptional vector bundles which are known to be stable. Nevertheless, the stability
of exceptional vector bundles on Pn and more in general on an algebraic variety X is still an open
and difficult problem.

Fibonacci bundles on Pn have been recently introduced in [4] as a generalization of the Steiner
exceptional bundles, namely of the exceptional bundles which admit a linear resolution. Fibonacci
bundles are homogeneous and generated by mutations. In general, these bundles are not exceptional,
since in particular they may have deformations (they are not rigid). Nevertheless, there exist inter-
esting families of non-rigid bundles which do not have deformations in the category of homogeneous
bundles (e.g. the so-called syzygy bundles).

This remark leads us to study a property analogous to the exceptionality in the category of homo-
geneous vector bundles. We will call such a notion G-exceptionality (see Definition 4.2). One of the
main results of this paper is that the Fibonacci bundles on P2 are G-exceptional.

A further natural object of investigation is the stability of G-exceptional vector bundles. In order
to tackle the problem of stability in the setting of homogeneous bundles, we can take advantage of
the techniques provided by the theory of representations of quivers with relations. Indeed a cele-
brated result due to Bondal and Kapranov [2] and Hille [8], recently investigated also by Ottaviani
and Rubei [16], states that results of classification of vector bundles and results of classification of
representations of quivers are closely related. In fact, there is an equivalence between the category of
homogeneous bundles on P2 and the category of representation of a certain quiver QP2 with rela-
tions and this allows to translate the stability of a homogeneous vector bundle on P2 in terms of the
stability of some representations of the quiver QP2 .

This equivalence is the key ingredient to prove our second main result. In particular we focus on
a special case of Fibonacci bundles, which we call almost square bundles. We describe explicitly the
representation of the quiver associated to an almost square bundle and by studying all the possible
subrepresentations we are able to prove the stability of the bundles we are dealing with. In this way
we follow the approach of [15] and [21], where the authors investigate certain families of bundles
whose associated representations admit a simple description. In our case the main difficulty is that
the representations associated to our bundles are quite complicated and so we need several technical
steps in order to get our result.

According to the results so far obtained, we are led to investigate the same kind of problems
in more generality, for example for all the Fibonacci bundles on P2 or for some special families of
bundles on Pn for n � 2. Some of these problems will be discussed in a forthcoming paper.

Next we outline the structure of the paper. In Section 2 we recall some preliminary definitions and
results concerning homogeneous bundles and the theory of representation of quivers with relations. In
particular we state the relation between homogeneous vector bundles on P2 and representations of a
certain quiver with relations (QP2 , RP2 ). In Section 3 we introduce the principal objects that we will
study in subsequent sections: the Fibonacci bundles (Definition 3.4) and the almost square bundles
on P2 (Definition 3.6). We also introduce a family of representations Rd of the quiver (QP2 , RP2 ),
which will be proved (in Theorem 5.1 and Proposition 5.8) to be the representations associated to
almost square bundles. In Section 4, we deal with the G-exceptionality of these bundles, proving that
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any almost square bundle on P2 is simple and that any Fibonacci bundle is G-exceptional. In the proof
we use cohomological methods, inspired by [4]. Section 5 is devoted entirely to prove that any almost
square bundle on P2 is stable. We first develop some technical lemmas that allows us to control the
slope of the subrepresentation T of Rd . Then, in Theorem 5.7, we show that any subrepresentation
T of Rd has slope less that the slope of Rd . This allows us to prove in Theorem 5.10 that any almost
square bundle is stable.

Notation 1.1. Throughout this paper, we will work over the complex numbers. If there is no confusion,
we will denote by Hi(E) the ith cohomology group of a vector bundle E on a smooth projective vari-
ety X and by hi(E) its dimension. Analogously, for any two vector bundles E and F , we will denote by
hom(E, F ) (resp. exti(E, F )) the dimension of Hom(E, F ) (resp. Exti(E, F )) as complex vector spaces
and we will denote by χ(E, F ) := ∑

i(−1)i exti(E, F ).
We will write P2 = P(V ∗) for some 3-dimensional complex vector space V and thus we will have

H0(OP2 (1)) = V ∗ and, for any integer d > 0, H0(OP2 (d)) = Sd V ∗ . We will denote O := OP2 when
there is no confusion.

2. Homogeneous vector bundles and representations of quivers

The goal of this section is to collect the results concerning homogeneous vector bundles and rep-
resentations of quivers that we will use through this paper.

Homogeneous vector bundles: We recall here some well known facts on homogeneous vector bun-
dles on rational homogeneous varieties. See [7] for more details on representation theory. In this
paper we are mostly interested in the case of complex projective spaces Pn , and in particular in the
case n = 2, anyway the results we present here hold in much more generality.

It is well known that the complex projective space Pn can be realized as a rational homogeneous
variety G/P , where G = SL(n + 1) and P is a parabolic subgroup. In the sequel when we will work
on Pn , we will assume G = SL(n + 1).

A rank r vector bundle E on Pn is called G-homogeneous (or simply homogeneous) if for any g ∈ G ,
g∗E ∼= E . It is well known that any homogeneous bundle on Pn is associated to a representation ρ
of the parabolic subgroup P . The irreducible homogeneous bundles Eλ are defined to be the homoge-
neous bundles associated to the irreducible representations of P with highest weight λ.

The irreducible homogeneous bundles on the projective plane P2 are classified and they are of
the form Sl Q (t) for some l ∈ N and t ∈ Z, where Q := TP2 (−1) is the tangent bundle on P2 twisted
by OP2 (−1).

Remark 2.1. Any homogenous vector bundle E on Pn admits a filtration

0 ⊂ E1 ⊂ · · · ⊂ Ek−1 ⊂ Ek = E

where each Ei/Ei−1 is irreducible. The graded vector bundle gr(E) := ⊕
i Ei/Ei−1 does not depend on

the filtration.

Given a sheaf E on Pn of rank rk(E) � 1, we define the slope of E as

μ(E) := c1(E)

rk(E)
,

where we denote by c1(E) the integer such that OPn (c1(E)) is the first Chern class of E . A vector
bundle E on Pn is called semistable (in the sense of Mumford–Takemoto) if and only if for all nonzero
subsheaves F ⊂ E with rk(F ) < rk(E) we have

μ(F ) � μ(E)

and if strict inequality holds, then E is said to be stable.
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We say that a homogeneous vector bundle E on Pn is multistable if it is the tensor product of a sta-
ble homogenous bundle and an irreducible G-representation. It follows immediately by the definition
that if a vector bundle is multistable and simple, then it is also stable.

A basic result is the following criterion for the stability of homogeneous vector bundles on Pn (see
[19] and [6]):

Theorem 2.2. A homogeneous bundle E on Pn is semistable (resp. multistable) if and only if μ(F ) � μ(E)

(resp. μ(F ) < μ(E)) for any homogeneous subbundle F of E associated to a subrepresentation of the P -
representation associated to E.

Given a vector bundle E on Pn , we recall that it is called simple if it satisfies Hom(E, E) ∼= C,
and exceptional if it is simple and satisfies Exti(E, E) = 0 for any i > 0. A vector bundle satisfying
Ext1(E, E) = 0 is called rigid. It is known that a rigid bundle is also homogeneous.

Given two homogenous bundles E and F on Pn , we denote by Exti(E, F )G the G-invariant part of
the G-module Exti(E, F ), that is the G-submodule where G acts trivially. We also denote χ(E, F )G :=∑

i(−1)i exti(E, F )G , where exti(E, F )G stands for the dimension of Exti(E, F )G .

Definition 2.3. Let E be a homogeneous vector bundle on an homogeneous variety G/P . We say that
E is G-simple if Hom(E, E)G ∼= C, G-rigid if Ext1(E, E)G = 0 and G-exceptional if it is G-simple and
Exti(E, E)G = 0 for any i > 0.

Clearly, if a vector bundle E is exceptional, then it is also G-exceptional. Of course, the converse is
not true.

Remark 2.4. It is clear that by definition exti(E, E)G equals to the number of copies of the trivial
representation C contained in the G-module Exti(E, E) ∼= Hi(E ⊗ E∗).

Representations of quivers: Now we will recall the definitions and state the main results that we
will use concerning quivers and representations of quivers associated to homogeneous bundles. We
will focus in particular on the case of P2.

This theory has been introduced by Bondal and Kapranov in [2] and generalized by Hille in [8]
and [9]. We will adopt the same notation as in [16] and [15].

Definition 2.5. A quiver is an oriented graph Q = (Q0, Q1), where Q0 is the set of vertices and Q1
is the set of arrows. We define two maps t,h : Q1 → Q0 such that for any arrow a ∈ Q1, t(a) is the
tail of a and h(a) is the head of a. A path in Q is a formal composition of arrows βm · · ·β1 such that
the tail of an arrow βk is the head of βk−1. A relation in Q is a linear combination of paths of Q with
common head and common tail.

A representation of a quiver Q = (Q0, Q1) is a set of vector spaces {Xv}v∈Q0 and a set of linear
maps {φβ}β∈Q1 where φβ : Xh(β) → Xt(β) . Given a set of relation R in Q, a representation of a quiver
Q with relations R is a representation of Q such that∑

k

λkφβi1
· · ·φβik

= 0

for any relation
∑

k λkβi1 · · ·βik ∈ R. A morphism between two representations of the quiver Q,
(Xv , φβ)v∈Q0,β∈Q1 and (Y v ,ψβ)v∈Q0,β∈Q1 is a set of linear maps { f v : Xv → Y v} such that, for every
β ∈ Q1 from v to w , we have

ψβ ◦ f v = f w ◦ φβ.

A subrepresentation of a representation (Xv , φβ)v∈Q0,β∈Q1 of a quiver Q is a representation
(Y v ,ψβ)v∈Q0,β∈Q1 of Q such that for any v ∈ Q0, Y v ⊂ Xv is a subvector space and for any ar-
row β ∈ Q1 from v to w , ψβ = φβ |Y v . A representation Y = (Y v ,ψβ)v∈Q0,β∈Q1 of a quiver Q is
called quotient representation of a representation X = (Xv , φβ)v∈Q0,β∈Q1 of the same quiver if there is
a surjective morphism from X to Y .
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For a later use, we need to introduce the following terminology and notation. Notice that our
definition of support is not standard.

Definition 2.6. We say that a representation X = (Xv , φβ)v∈Q0,β∈Q1 has multiplicity m at a point
v of Q0 if dim Xv = m and we will denote it by mX

v . We call support of a representation X of a
quiver Q, the subset of Q0 containing the vertices where X has positive multiplicity. More precisely
Supp(X) := {v ∈ Q0 | mX

v � 1}. We call support with multiplicities, and we denote by Suppm(X) the
data Supp(X) and (mX

v )v∈Supp(X) . The vector (mX
v )v∈Supp(X) is usually called dimension vector of the

representation.

We will use the following notation concerning the support with multiplicities of given representa-
tions of a quiver Q.

(a) Given two representations X and Y , such that mX
v � mY

v for any v ∈ Q0, we denote by X \ Y the
set of vertices of the support of X with multiplicities (mX

v − mY
v )v∈Supp(X) .

(b) Given two representations X and Y , we will say that a set of vertices with multiplicities, that is a
subset S ⊂ Q0 and a collection of nonnegative integers (nv )v∈S , is the disjoint union of Suppm(A)

and Suppm(B), if we have S = Supp(A) ∪ Supp(B) and for each vertex v ∈ S , we have nv =
mX

v +mY
v . If Z is a representation such that Suppm(Z) = S, (nv )v∈S , we will also say that Z is the

disjoint union of X and Y and we will write Z = X 
 Y .

(c) Given two representations X and Y , we denote by X ∩ Y the set of vertices with multiplicities
given by the intersection Supp(X)∩Supp(Y ) and by the multiplicities min{m(Av),m(B v)}, for any
v ∈ Supp(X) ∩ Supp(Y ).

Definition 2.7. From now on we denote by QP2 the quiver (Q0, Q1) such that:

Q0 := {
Sl Q (t)

∣∣ l ∈ N, t ∈ Z
}
,

i.e. each vertex is identified with an irreducible homogeneous bundle on P2. The set of arrows Q1 is
defined in the following way: there is an arrow β from the vertex v ∈ Q0 corresponding to Sl Q (t) to
the vertex w ∈ Q0 corresponding to S p Q (q) if and only if Ext1(Sl Q (t), S p Q (q))G �= 0. This happens
if and only if (p,q) = (l − 1, t − 1) or (p,q) = (l + 1, t − 2).

It is easily seen that the quiver QP2 has three connected components Q(1)

P2 , Q(2)

P2 and Q(3)

P2 , given

by the congruence class modulo 3
2 of the slope of the homogeneous bundles corresponding to the ver-

tices of the connected component. Every homogeneous bundle E on P2 splits as E = ⊕
i E(i) where

the sum is over the connected components of QP2 and gr(E(i)) contains only irreducible vector bun-
dles corresponding to vertices of the connected component labeled by i. For convenience, we identify
this component Q(1)

P2 with the following subset of Z2

◦ ◦
O(3) Q (4)

◦ ◦
O

◦
Q (1) S2 Q (2)

◦ ◦
O(−3)

◦
Q (−2)

◦
S2 Q (−1) S3 Q

◦ ◦
O(−6)

◦
Q (−5)

◦
S2 Q (−4)

◦
S3 Q (−3) S4 Q (−2)

◦ ◦ ◦ ◦ ◦
S5 Q (−4)
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Definition 2.8. We define RP2 as the set of relations on QP2 given by the commutativity of the
squares. More precisely, denoting by βw,v the arrow from v to w , the relations in RP2 are

β(x−1,y−1),(x−1,y)β(x−1,y),(x,y) − β(x−1,y−1),(x,y−1)β(x,y−1),(x,y)

for all (x, y) ∈ Q(i)
P2 ∈ Z2 for some i, such that (x − 1, y) ∈ QP2 and

β(x−1,y−1),(x,y−1)β(x,y−1),(x,y)

for all (x, y) ∈ Q(i)
P2 ∈ Z2 for some i, such that (x − 1, y) /∈ QP2 .

Any homogeneous bundle E on P2 defines an associated representation of the quiver QP2 with
relations RP2 , in the following way:

Definition 2.9. Given a homogeneous vector bundle E on P2, according to Remark 2.1 we have the
graded

gr(E) =
⊕

λ

Eλ ⊗ Vλ

where Eλ = Sl Q (t) for some l ∈ N and t ∈ Z and where Vλ is a k-dimensional complex vector space,
being k � 0 the number of times that the irreducible homogenous bundle Sl Q (t) occurs in the graded
bundle gr(E). To the vertex of QP2 corresponding to Eλ = Sl Q (t) we associate the vector space
Vλ = Ck . To any arrow λ → λ′ of the quiver QP2 we associate a linear map Vλ → Vλ′ , defined by the
G-invariant element of Ext1(gr(E),gr(E)) associated to the action of the nilpotent algebra on gr(E).
See e.g. [16] for more details.

A key result is the following equivalence of categories due to Bondal–Kapranov and in a much
more general setting due to Hille (see [2,8–10]).

Theorem 2.10. The category of homogeneous bundles on P2 is equivalent to the category of finite dimensional
representations of the quiver QP2 with the relations RP2 .

According to Theorem 2.10, we will identify an homogeneous bundle E on P2 with its associated
representation of the quiver (QP2 , RP2 ). In particular we will use the name support of a vector bundle
E to refer the support with multiplicities of the representation associated to E .

Remark 2.11. Notice that the first Chern class of a homogeneous vector bundle E can be computed
as the sum of the first Chern classes of the irreducible bundles corresponding to the vertices of the
support of E multiplied by the multiplicities. Analogously, the rank of E is the sum of the ranks of
the irreducible bundles corresponding to such vertices multiplied by the multiplicities.

The previous remark lead us to pose the following definition:

Definition 2.12. We define the slope (resp. first Chern class, rank) of a set of vertices with multi-
plicities as the slope (resp. first Chern class, rank) of the vector bundle whose support is that set of
vertices with multiplicities.

The equivalence between the category of homogeneous bundles on P2 and the category of the rep-
resentations of the quiver (QP2 , RP2 ) implies that any homogeneous subbundle F of a homogeneous
bundle E on P2 is associated to a subrepresentation of the representation associated to E . Hence in
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view of Theorem 2.2 in order to prove the multistability of a homogeneous bundle E , it is enough to
check that the slope of any subrepresentation of the representation associated to E is less than the
slope of E .

It is immediate to deduce from the definition the following lemma,

Lemma 2.13. Let E be a homogeneous vector bundle on P2 such that the set of vertices of the support of E is
disjoint union of the sets of vertices of the supports of two representations X and Y . The following holds:

(a) If μ(X) = μ(Y ), then μ(E) = μ(X) = μ(Y ).
(b) If μ(X) < μ(Y ), then μ(X) < μ(E) < μ(Y ).

To construct moduli spaces of representations of quivers according to Mumford’s geometric invari-
ant theory there is a suitable notion of semistability of quivers introduced in [13] by A. King (see also
[11,20]). This notion of semistability turns out to be equivalent to the notion of Mumford–Takemoto
semistability of the bundle and in this way one gets a moduli space of homogeneous semistable
bundles E with fixed gr(E). More precisely according to [13]:

Definition 2.14. Let mod − kQ be the abelian category of representations of a quiver Q and θ :
K0(mod − kQ) → R an additive function on the Grothendieck group. Any representation R of Q is
called θ -semistable if θ(R) = 0 and for every subrepresentation R ′ ⊆ R , θ(R ′) � 0. R is called θ -stable
if the only subrepresentations R ′ ⊆ R with θ(R ′) = 0 are R and 0.

To any homogeneous bundle E with dimension vector α and

gr(E) =
⊕

λ

Eλ ⊗ Vλ,

there is associated a natural character μ(α) = (μ(α)λ)λ given by

μ(α)λ = c1(E)rk(Eλ) − rk(E)c1(Eλ).

This defines an additive function

μ(α) : K0(mod − kQ) → R

such that for any F of dimension vector (βλ)λ ,

μ(α)(F ) =
∑
λ

βλμ(α)λ.

Keeping these notations, we have

Proposition 2.15. Let E be a homogeneous vector bundle on P2 with dimension vector α corresponding to
gr(E). Then

(1) E is semistable if and only if the representation of QP2 associated to E is μ(α)-semistable.
(2) E is multistable if and only if the representation of QP2 associated to E is μ(α)-stable.

Proof. See Theorem 2.2 and [16, Theorems 7.1 and 7.2]. �
Remark 2.16. It is clear from the above result that the Mumford–Takemoto stability of a vector bundle
E is a stronger property than the stability of the representation associated to E .
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3. Fibonacci bundles and almost square bundles

In this section we introduce some families of homogeneous vector bundles and we describe the
associated representation of the quiver. In particular we will recall the definition of syzygy bundles
(Definition 3.1), of Fibonacci bundles (Definition 3.4) and we will introduce the almost square bundles
(Definition 3.6). In next sections, we will study the G-exceptionality and the stability of such bundles.

Definition 3.1. For any integer d > 0, we denote by Syzd the vector bundle on P2 defined as the
cokernel of the evaluation map O(−d) → Hom(O(−d), O)∗ ⊗ O, that is by the exact sequence

0 → O(−d) → Sd V ⊗ O → Syzd → 0. (3.1)

The vector bundle Syzd is called a syzygy bundle.

It is well known that syzygy bundles are stable homogeneous vector bundles: see for instance
[1,17,18].

Lemma 3.2. The graded vector bundle of Syzd is given by

gr(Syzd) =
d⊕

i=1

Si Q (i − d) (3.2)

and the representation of the quiver (QP2 , RP2 ) associated to Syzd is given by

◦ ◦
Q (−d+1)

◦
S2 Q (−d+2)

◦ ◦
Sd−2 Q (−2)

◦
Sd−1 Q (−1) Sd Q

with all the multiplicities equal to one and all the maps different from zero.

Proof. By [15, Remark 23] it is easy to check that the graded bundle of Sd V ⊗ O is

gr(Sd V ⊗ O) =
d⊕

i=0

Si Q (i − d),

and thus we get (3.2), since by definition Syzd is the quotient of Sd V ⊗ O by O(−d). The maps
in the representation are all different from zero, because otherwise the associated bundle would be
decomposable, and this is impossible because Syzd is stable. �
Remark 3.3. Any syzygy bundle on P2 is G-exceptional. Indeed, Syzd is simple and hence G-simple.
Moreover one can see that it is G-rigid by looking at the representation associated and observing
that, since all the multiplicities in the representation are one, all the possible choices of the nonzero
maps give isomorphic representations.

The syzygy bundles are special cases of the so-called Fibonacci bundles. Following [4], we call
Fibonacci bundles a family of homogeneous bundles defined by means of mutations, which can be
characterized from the fact that they admit a resolution whose coefficients are related to the numbers
of Fibonacci. Let us recall the definition of the Fibonacci bundles.
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Definition 3.4. The Fibonacci bundles (associated to the pair (OP2 (−d), OP2 )) are the vector bun-
dles Ck defined recursively as follows: C0 = O(−d), C1 = O and

0 → Ck−1
ik−→ Ck ⊗ Hom(Ck−1, Ck) → Ck+1 → 0, for k � 1,

where ik is the natural evaluation map. Notice that C2 = Syzd . It is possible to see that
Hom(Ck−1, Ck) ∼= Sd V ∗ if k is odd, Hom(Ck−1, Ck) ∼= Sd V if k is even.

We refer the reader to [4] for the details of the construction and the definition in a more general
context (see also [23]).

Remark 3.5. We recall the following characterization which explain the relation between these bun-
dles and the Fibonacci numbers. The Fibonacci bundle Ck on P2 has the following resolution

0 → O(−d)ak−1 → Oak → Ck → 0

where the sequence {ak} is defined as follows

a0 = 0, a1 = 1, ak+1 =
(

d + 2

2

)
ak − ak−1.

In [4], the first author proved that these bundles are exceptional if and only if d = 1,2, while for
d � 3 a general deformation of Ck is simple, but Ck is not rigid.

Now we are going to concentrate our attention on the Fibonacci bundles on P2 of type C3, that
we will also call almost square bundles. Also in this case, as in case of syzygy bundles, we are able to
describe their corresponding representation of the quiver (QP2 , RP2 ).

Definition 3.6. Let d � 1 be an integer. According to Definition 3.4, the Fibonacci bundle C3 is the
cokernel of the natural map:

O → Hom(O, Syzd)
∗ ⊗ Syzd

∼= Sd V ∗ ⊗ Syzd.

We call almost square bundle the dual of such bundles, that is the bundle Ed
∼= C∗

3 given by the exact
sequence

0 → Ed → Sd V ⊗ Syz∗
d → O → 0. (3.3)

The choice of the name is motivated by the shape of the associated representation, see Definition 3.8
below.

Lemma 3.7. The graded vector bundle associated to Sd V ⊗ Syz∗
d is

gr
(

Sd V ⊗ Syz∗
d

) =
d⊕

j=1

d⊕
i=0

( min(i, j)⊕
k=0

Si+ j−2k(k + i − 2 j)

)
.

Proof. By [15, Remark 23] the graded bundle of Sd V ⊗ O is

gr
(

Sd V ⊗ O
) =

d⊕
Si Q (i − d).
i=0
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On the other hand, gr(Syz∗
d) = gr(Syzd)

∗ and thus by Lemma 3.2

gr(Syzd)
∗ =

d⊕
j=1

(
S j Q ( j − d)

)∗ =
d⊕

j=1

S j Q (d − 2 j)

where the last equality follows from the fact that since Q is a rank two vector bundle with c1(Q ) = 1
then Q ∗ ∼= Q (−1). Thus,

gr
(

Sd V ⊗ Syz∗
d

) = gr
(

Sd V ⊗ O
) ⊗ gr

(
Syz∗

d

)

=
(

d⊕
i=0

Si Q (i − d)

)
⊗

(
d⊕

j=1

S j Q (d − 2 j)

)

=
d⊕

j=1

d⊕
i=0

( min(i, j)⊕
k=0

Si+ j−2k(k + i − 2 j)

)

where the last equality follows by Pieri’s formula. �
We define now a representation Rd of the quiver QP2 . In Theorem 5.1 and Proposition 5.8 below

we will prove that this representation Rd is exactly the unique representation associated to an almost
square bundle Ed on P2.

Definition 3.8. Let Rd = (U d
i, j,ϕ

d
i, j,ψ

d
i, j) be a representation of the quiver QP2 defined as follows. The

support of Rd is contained in a square with the vertices corresponding to O, Sd+1 Q (d + 1), Sd(−2d),
S2d Q (−d). For any fixed d we label the vertices (i, j) denoting by (1,1) the vertex S2d Q (−d),
by (1,d + 1) the vertex Sd Q (−2d), by (d,1) the vertex Sd+1 Q (d − 2), by (d + 1,2) the vertex
Sd−1 Q (d − 1) and by (d + 1,d + 1) the vertex O.

O ◦ ◦
d−1

◦
d−1 d−2

◦ ◦
3

◦
2 1

Sd−1 Q (d−1)

Sd+1 Q (d−2)◦ ◦
d

◦
d d−1

◦ ◦
4

◦
3

◦
2 1

◦ ◦
d−1

◦
d−1

◦ ◦
4

◦
3

◦
2 1

◦ ◦
4

◦
4

◦ ◦
4

◦
3

◦
2 1

◦ ◦
3

◦
3

◦ ◦
3

◦
3

◦
2 1

◦ ◦
2

◦
2

◦ ◦
2

◦
2

◦
2 1

◦
Sd Q (−2d)

◦
1

◦
1

◦ ◦
1

◦
1

◦
1 S2d Q (−d) 1
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We denote by U d
i, j the vector space corresponding to the vertex (i, j), for 1 � i, j � d + 1. The

dimensions of such vector spaces are as follows:

ad
i, j := dim U d

i, j =
{

i for 1 � i � j � d,

j for 1 � j < i � d,

ad
d+1, j := dim U d

d+1, j =
{

d − 1 for j = d + 1,

j − 1 for 1 � j � d.
(3.4)

In the picture, we have written the dimension ai, j of the vector space corresponding to the vertex
(i, j). We denote by ϕd

i, j the horizontal map from U d
i, j to U d

i, j+1 and by ψd
i, j the vertical map from

U d
i, j to U d

i−1, j . Moreover these maps satisfy the following conditions:

any map has maximal rank, (3.5)

any possible composition of maps has maximal rank, (3.6)

the direct sum of the maps ϕd
d,1 and ψd

d+1,2 has rank 2. (3.7)

4. G-exceptional vector bundles

The main goal of this section if to prove the G-exceptionality of the Fibonacci bundles on P2. We
will prove that a Fibonacci bundle on P2 is G-exceptional, in spite it is not exceptional. Moreover, we
will prove that any almost square bundle on P2 is also simple, and not only G-simple.

Remark 4.1. Since the anticanonical line bundle on P2 is ample, it is easy to see, by Serre duality, that
any G-simple bundle E satisfies also Ext2(E, E)G = 0.

Theorem 4.2. Any almost square bundle Ed is simple and G-exceptional.

Proof. In the cases d = 1,2, by [4] we know that Ed is exceptional. So, we can assume that d � 3. We
want to prove that Hom(Ed, Ed) ∼= C. Applying the functor Hom(−, Ed) to the sequence (3.3), we get

Hom
(

Sd V ⊗ Syz∗
d, Ed

) → Hom(Ed, Ed) → Ext1(O, Ed).

We show first that the group Hom(Syz∗
d, Ed) vanishes. Indeed applying the functor Hom(S yz∗

d,−) to
the sequence (3.3) we get

0 → Hom(Syz∗
d, Ed) → Sd V ∗ ⊗ Hom(Syz∗

d, Syz∗
d)

f−→ Hom(Syz∗
d, O).

Since the bundle Syzd is simple and the map f in this sequence is the canonical isomorphism Sd V ∗ ∼=
H0(Syzd), we get Hom(Syz∗

d, Ed) = 0.
On the other hand, we prove now that Ext1(O, Ed) ∼= C and the simplicity of Ed will follow. Taking

the cohomology of the sequence (3.3) we get

Sd V ⊗ H0(Syz∗
d) → H0(O) → H1(Ed) → Sd V ⊗ H1(Syz∗

d)

By the sequence in Definition 3.4 it is easy to check that

H0(Syz∗
d) = H1(Syz∗

d) = 0
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and so we conclude that

Ext1(O, Ed) ∼= H1(Ed) ∼= H0(O) ∼= C.

This proves that Hom(Ed, Ed) ∼= C. By Remark 4.1, it also follows that Ext2(Ed, Ed) = 0.
We want to prove now that Ext1(Ed, Ed)

G = 0. Since we have Hom(Ed, Ed)
G ∼= C and

Ext2(Ed, Ed)
G = 0 it is enough to prove that χ(Ed, Ed)

G = 1. By applying again the functor
Hom(−, Ed) to the sequence (3.3), we have

χ(Ed, Ed)
G = χ

(
Sd V ⊗ Syz∗

d, Ed
)G − χ(Ed)

G .

We have showed that H1(Ed) ∼= C. In the same way it is easy to prove that

H0(Ed) = H2(Ed) = 0,

and so it follows that

χ(Ed) = χ(Ed)
G = −1.

We want to prove now that χ(Sd V ⊗ Syz∗
d, Ed)

G = 0. Applying now the functor
Hom(Sd V ⊗ Syz∗

d,−) to the sequence (3.3), we get

χ
(

Sd V ⊗ Syz∗
d, Ed

)G = χ
(

Sd V ⊗ Syz∗
d, Sd V ⊗ Syz∗

d

)G − χ
(

Sd V ⊗ Syz∗
d, O

)G
.

Since we know that Syzd is a G-exceptional bundle, we have

χ
(

Sd V ⊗ Syz∗
d, Sd V ⊗ Syz∗

d

)G = 1.

Hence, it only remains to prove that χ(Sd V ⊗Syz∗
d, O)G ∼= χ(Sd V ∗ ⊗Syzd)

G = 1. Tensoring by Sd V ∗
the sequence defining Syzd we get

0 → O(−d) ⊗ Sd V ∗ → O ⊗ Sd V ⊗ Sd V ∗ → Sd V ∗ ⊗ Syzd → 0.

Clearly

Hi(O ⊗ Sd V ⊗ Sd V ∗) = 0 for i = 1,2,

H0(O ⊗ Sd V ⊗ Sd V ∗) ∼= Sd V ⊗ Sd V ∗,

H j(O(−d) ⊗ Sd V ∗) = 0 for i = 0,1,

and since d � 3, by Serre’s duality

H2(O(−d) ⊗ Sd V ∗) ∼= H0(O(d − 3) ⊗ Sd V
)∗ ∼= Sd−3 V ⊗ Sd V ∗.

Hence, since by the Littlewood–Richardson rule, for any d � 3, the SL(V )-module Sd−3 V ⊗ Sd V ∗ does
not contain C and Sd V ⊗ Sd V ∗ contains one copy of C, we obtain

H2(O(−d) ⊗ Sd V ∗)G = 0 and dim H0(O ⊗ Sd V ⊗ Sd V ∗)G = 1.
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Then, we conclude that χ(O(−d) ⊗ Sd V ∗)G = 0 and χ(O ⊗ Sd V ⊗ Sd V ∗)G = 1 and this implies

χ
(

Sd V ⊗ Syz∗
d, O

)G = 1

which concludes our proof. �
Remark 4.3. The same kind of computations as in the proof of the previous theorem allows us to
show that

Ext1(Ed, Ed) ∼= Sd V ⊗ Ad
(

Sd V
) ⊗ Sd−3 V

and for this reason Ed is not rigid (hence not exceptional) as soon as d � 3. Nevertheless
Ext1(Ed, Ed) as an SL(V )-module does not contain any summand isomorphic to C and so we have
Ext1(Ed, Ed)

G = 0.

The following technical lemma will be useful to prove the G-exceptionality of any Fibonacci bundle
on P2.

Lemma 4.4. For any k � 1, let Ck be a Fibonacci bundle on P2 . Then the following holds:

(i) χ(Ck, Ck)
G = 1,

(ii) χ(Ck ⊗ Sd V , Ck−1)
G = 0 for k odd, χ(Ck ⊗ Sd V ∗, Ck−1)

G = 0 for k even,
(iii) χ(Ck−1, Ck ⊗ Sd V )G = 1 for k odd, χ(Ck−1, Ck ⊗ Sd V ∗)G = 1 for k even.

Proof. We will prove it by induction on k. Recall that C0 = O(−d), C1 = O, C2 = Syzd and C3 = E∗
d . It

is easy to check directly that the relations (i)–(iii) hold for k = 1,2.
Now assume that the relations hold for Ch and Ch−1 with h � k. Assume k odd, then the Fibonacci

bundle Ck+1 is defined by the exact sequence:

0 → Ck−1 → Ck ⊗ Sd V → Ck+1 → 0. (4.1)

Applying the functor Hom(Ck ⊗ Sd V ,−) to this sequence we get

χ
(
Ck ⊗ Sd V , Ck+1

)G = χ
(
Ck ⊗ Sd V , Ck ⊗ Sd V

)G − χ
(
Ck ⊗ Sd V , Ck−1

)G

and by induction hypotheses (i) and (ii) we get

χ
(
Ck ⊗ Sd V , Ck+1

)G = 1 − 0 = 1,

that is condition (iii) in case k+1 (even). Applying now the functor Hom(−, Ck ⊗ Sd V ) to the sequence
(4.1) we get

χ
(
Ck+1, Ck ⊗ Sd V

)G = χ
(
Ck ⊗ Sd V , Ck ⊗ Sd V

)G − χ
(
Ck−1, Ck ⊗ Sd V

)G
.

Since by hypothesis of induction

χ
(
Ck ⊗ Sd V , Ck ⊗ Sd V

)G = 1 and χ
(
Ck−1, Ck ⊗ Sd V

)G = 1,

we get

χ
(
Ck+1, Ck ⊗ Sd V

)G = 0
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which proves condition (ii) in case k + 1 (even). Let us apply now Hom(Ck−1,−) to the same se-
quence (4.1) and we get

χ(Ck−1, Ck+1)
G = χ

(
Ck−1, Ck ⊗ Sd V

)G − χ(Ck−1, Ck−1)
G = 1 − 1 = 0

where we have used once again hypothesis of induction.
Finally applying the functor Hom(−, Ck+1) we get

χ(Ck+1, Ck+1)
G = χ

(
Ck ⊗ Sd V , Ck+1

)G − χ(Ck−1, Ck+1)
G = 1 − 0

and this proves equality (i) in case k + 1. The case k even is analogous. �
The following result proves that any Fibonacci bundle Ck on P2 is G-exceptional.

Theorem 4.5. For any k � 1, let Ck be a Fibonacci bundle on P2 . Then the following holds:

(i) hom(Ck, Ck)
G = 1, exti(Ck, Ck)

G = 0 for i = 1,2,
(ii) ext2(Ck ⊗ Wk, Ck−1)

G = 0,
(iii) hom(Ck−1, Ck ⊗ Wk)

G = 1, exti(Ck−1, Ck ⊗ Wk)
G = 0, for i = 1,2,

where Wk
∼= Sd V if k is odd and Wk

∼= Sd V ∗ if k is even.

Proof. The proof is by induction on k. If k = 1,2 it is easy to check directly the statements.
Now assume that the relations hold for Ch and Ch−1 with h � k. Assume k odd, let Ck+1 be the

Fibonacci bundle defined by the exact sequence:

0 → Ck−1 → Ck ⊗ Sd V → Ck+1 → 0.

Applying the functor Hom(Ck ⊗ Sd V ,−) to this sequence and using induction hypotheses (i) and (ii)
we get ext1(Ck ⊗ Sd V , Ck+1)

G = 0 and ext2(Ck ⊗ Sd V , Ck+1)
G = 0. Since by Lemma 4.4 we know that

χ(Ck ⊗ Sd V , Ck+1)
G = 1, it follows that hom(Ck ⊗ Sd V , Ck+1)

G = 1. Thus we obtain the statement (iii)
in case k + 1.

Applying now the functor Hom(−, Ck ⊗ Sd V ) to the same sequence we get

Ext1(Ck−1, Ck ⊗ Sd V
)G → Ext2(Ck+1, Ck ⊗ Sd V

)G → Ext2(Ck ⊗ Sd V , Ck ⊗ Sd V
)G

and the statement (ii) in case k + 1 immediately follows by the assumptions (i) and (iii). Applying
Hom(Ck−1,−) to the sequence, we get hom(Ck−1, Ck+1)

G = 0 and exti(Ck−1, Ck+1)
G = 0 for i = 1,2.

Finally applying the functor Hom(−, Ck+1) and using condition (iii) we obtain equality (i) in case
k + 1. The case k even is analogous. �

From Theorem 4.5 we immediately get that

Corollary 4.6. For any k � 1, the Fibonacci bundle Ck on P2 is G-exceptional.

5. Stability of the almost square bundles

The main goal of this section is to prove that any almost square bundle Ed on P2 is stable. As
a key ingredient, we will use the fact that we are able to describe exactly the representation of the
quiver (QP2 , RP2 ) associated to the homogeneous bundle Ed . Indeed we have:
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Theorem 5.1. The representation of the quiver (QP2 , RP2 ) associated to any almost square bundle Ed on P2

is of type Rd.

Proof. Let R ′ be the representation associated to Ed given by the correspondence stated in Defini-
tion 2.9. By Lemma 3.7, the graded vector bundle associated to Sd V ⊗ Syz∗

d is

gr
(

Sd V ⊗ Syz∗
d

) =
d⊕

j=1

d⊕
i=0

( min(i, j)⊕
k=0

Si+ j−2k(k + i − 2 j)

)
.

Thus, it is easily seen that the support with multiplicities of R ′ is equal to the support with multi-
plicities of a representation of type Rd . Let us adopt for the arrows and the vector spaces of R ′ the
same notation as in Definition 3.8.

Now we will show that the maps of the representation R ′ must verify all the properties (3.5), (3.6),
(3.7). In order to do this we will show that if the maps of R ′ do not satisfy one of these conditions,
then there exists a nontrivial subrepresentation of R ′ , which is also a quotient representation of R ′ .
This will imply that such representation is a direct sum of R ′ and so, the vector bundle Ed splits, and
this contradicts the simplicity of Ed .

Assume first that R ′ does not satisfy property (3.7). In that case, we can consider a subrepresen-
tation which has multiplicity 1 at any vertex of the support of R ′ and all the maps different from
zero. Indeed, it is enough to take at the vertex (d,2) a 1-dimensional subspace containing the image
of ϕd

d,1 ⊕ ψd
d+1,2, and then restrict all the vector spaces at the following vertices to the corresponding

images. By the commutativity of the diagram, we get everywhere 1-dimensional spaces. It is easy to
see that such subrepresentation is also a quotient representation, and we are done.

Assume now that a map χ : V → W of R ′ does not have maximal rank, thus contradicting property
(3.5). Assume dim V � dim W . Then if the map χ is not injective, we can take a subrepresentation
supported at 0 �= ker(χ) ⊂ V and we consequently restrict all the vector spaces of the support of R ′
to the corresponding images and preimages with respect to all the maps. By the commutativity of the
diagram we get a nontrivial subrepresentation, which is also a quotient representation, that is a direct
summand of R ′ and we get a contradiction as above. Assume now that dim V � dim W . If the map χ
is not surjective, we can take a subrepresentation supported at V and at 0 �= Im(χ) ⊂ W . Restricting
all the other spaces to the corresponding images and preimages, we conclude as above.

From property (3.5) it follows immediately that the property (3.6) holds for any composition of
maps, except possibly for the compositions χ j of the following form:

χ j := ψd
j, j ◦ · · · ◦ ψd

d, j ◦ ψd
d+1, j : U d

d+1, j → U d
j−1, j for some 2 � j � d, or (5.1)

χd+1 := ψd
d+1,d+1 ◦ ψd

d,d+1 : U d
d+1,d+1 → U d

d−1,d+1. (5.2)

Assume then that χ j is not injective, for some 2 � j � d + 1. Then we can consider a subrepre-
sentation of R ′ supported at 0 �= ker(χ) ⊂ U d

d+1, j . By consequently restricting all the vector spaces
of the support of R ′ to the images and to the preimages with respect to all the maps, we will ob-
tain a subrepresentation, which in particular, by the commutativity of the diagram, has multiplicity
0 at the vertex ( j − 1, j) for 2 � j � d and at the vertex (d,d + 1) for j = d + 1. Moreover such a
subrepresentation is also a quotient representation, and this concludes the proof. �

The next basic lemma characterize the subrepresentations of a representation Rd .

Lemma 5.2. Let {bi, j} be a collection of integers for 1 � i, j � d + 1 such that: bi, j � ad
i, j = dim U d

i, j . Then
there exists a subrepresentation of Rd whose support has multiplicities {bi, j} if and only if the following con-
ditions hold:

bd,2 � bd,1 + bd+1,2 (5.3)
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and for any (i, j) we have

bi, j � bi, j+1 and bi, j � bi−1, j + 1. (5.4)

Moreover the equality bi, j = bi−1, j + 1 is possible only in the following cases:

(i) i < j, (i, j) �= (d,d + 1),
(ii) i = j � d − 1, if bd+1, j � bi−1, j ,

(iii) (i, j) = (d,d), if bd+1,k � bd−1,d, for k = d,d + 1,
(iv) (i, j) = (d,d + 1), if bd+1,d+1 � bd−1,d+1 .

Proof. We first prove that the conditions listed in the statement are necessary. Assume that {V i, j} is
the support of a subrepresentation of Rd and set bi, j = dim V i, j .

By definition the representation Rd satisfies condition (3.5). In particular the horizontal maps ϕd
i, j :

U d
i, j → U d

i, j+1 are injective. The vertical maps ψd
i, j : U d

i, j → U d
i−1, j are injective if i > j or if (i, j) =

(d + 1,d + 1), while if i � j and i �= d + 1 we have dim ker(ψd
i, j) = 1. It follows immediately that the

conditions (5.4) hold. Moreover (5.3) follows from the property (3.7).
Assume now that bi, j = bi−1, j + 1. Clearly, since the space V i, j contains ker(ψd

i, j) �= 0, we have
i � j and i �= d + 1. From the property (3.6) it follows that the maps χ j defined by (5.1) and (5.2) are
injective. Hence it immediately follows that if i = j � d − 1, then we have dim Vd+1, j � dim V i−1, j ,
namely we have (ii). Analogously we prove case (iv). In order to check (iii), we also note that the maps
ϕd

d+1,d and ϕd
d,d are surjective and, since the diagram is commutative, then we have dim Vd+1,k �

dim Vd−1,d , for k = d,d + 1.
Now we need to check that the conditions above are also sufficient. Assume that {bi, j} is a collec-

tion of integers as above. Then it is easy to see that there exists a subrepresentation whose support
has multiplicities (bi, j). Indeed, starting from the vertex (1,d + 1) we can choose a subspace V 1,d+1

of U d
1,d+1 of dimension b1,d+1. Then we choose V 2,d+1 and V 1,d , such that their images are con-

tained in V 1,d+1, and using the commutativity of the diagram we can go on and choose all the other
subspaces V i, j ⊆ U d

i, j of dimension bi, j . The conditions on the integers bi, j allow us to choose these
spaces V i, j for any i, j such that

ϕi, j(V i, j) ⊆ V i, j+1 and ψi, j(V i, j) ⊆ V i−1, j + 1,

and

ker
(
ψd

i, j

) ⊆ V i, j

whenever bi, j = bi−1, j + 1. This clearly implies that the collection {V i, j} can be the support of a
subrepresentation of Rd . �

Now we are going to state some definitions and prove some technical lemmas that we will needed
later on.

Definition 5.3. Let Sd be the representation of (QP2 , RP2 ) such that the support of Sd is the support
of Rd with all multiplicities equal to one and all the maps are nonzero constants (and thus equal to
one). For any 2 � k � d, let Pk

d be the representation of (QP2 , RP2 ) such that the support of Pk
d is the

support of Sd with the following multiplicities. For any vertex (i, j):

m(i, j) =

⎧⎪⎨
⎪⎩

1, i = 1,

1, j = 1,

1, i = d + 1, 2 � j � k,

2 elsewhere.
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Remark 5.4.

(a) It follows from [15, Lemma 40] that the vector bundle Fd associated to Sd is multistable, that is,
that any subrepresentation of Sd has slope less than the slope of Sd .

(b) By [15, Remark 23 and the Four Terms Lemma], the vector bundle Fd can be seen as the kernel
of the natural projection

S2d,d V ⊗ O π−→ Sd Q (d)

where S2d,d V is an irreducible Schur representation (see for instance [7]).

With the above notations

Lemma 5.5. For any integer d > 0, the following holds:

(a) rk(Rd) = (d+2
2

)2 − (d+2
2

) − 1 and c1(Rd) = − d(d+1)(d+2)
2 .

(b) rk(Sd) = d(d + 1)(d + 2) and c1(Sd) = − 3
2 d(d + 1).

(c) rk(Pk
d) = d((d + 1)(d + 2) + (d−1)(2d+1)

2 ) + (d−k)(d−k+1)
2 and

c1(Pd) = −3d(d + 1)

2
− d(d − 1)(d + 1)

2
+ (d − k)(d − k + 1)(d − k − 1)

2
.

(d) μ(Rd−1) < μ(Rd) < μ(Sd).
(e) μ(Pk

d) < μ(Rd) for d � 2 and 2 � k � d.

Proof. Once we have proved (a)–(c), the items (d) and (e) follow after a straightforward computation,
keeping in mind that, by definition, given a representation R we have μ(R) = c1(R)

rk(R)
. So, we will prove

the first three items and we left the proof of the remaining to the reader.
(a) By Theorem 5.1 we have rk(Rd) = rk(Ed) and c1(Rd) = c1(Ed). Recall that the vector bundle Ed

is given by the short exact sequence

0 → Ed → Sd V ⊗ Syz∗
d → O → 0 (5.5)

where Syzd is the syzygy bundle on P2 defined by the exact sequence

0 → O(−d) → Sd V ⊗ O → Syzd → 0. (5.6)

From the exact sequence (5.6) we get that

rk(Syzd) =
(

d + 2

2

)
− 1 and c1(Syzd) = d.

Using this equalities together with the exact sequence (5.5) we obtain:

rk(Rd) =
(

d + 2

2

)
rk

(
Syz∗

d

) − 1 =
(

d + 2

2

)2

−
(

d + 2

2

)
− 1

and

c1(Rd) =
(

d + 2

2

)
c1

(
Syz∗

d

) = −d
(d + 1)(d + 2)

2
.
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(b) First of all notice that

Rd = Rd−1 
 Sd

from which we deduce that

rk(Sd) = rk(Rd) − rk(Rd−1) and c1(Sd) = c1(Rd) − c1(Rd−1).

Thus, using (a) we have

rk(Sd) =
(

d + 2

2

)2

−
(

d + 2

2

)
− 1 −

(
d + 1

2

)2

+
(

d + 1

2

)
+ 1 = d(d + 1)(d + 2)

and

c1(Sd) = −d
(d + 1)(d + 2)

2
+ (d − 1)

(d + 1)(d)

2
= −3

2
d(d + 1).

(c) Let R be the rectangle of base d − 1, height d − 2 and Q (−2) as the highest vertex of the left-
hand side and let R ′ be the rectangle of base d − k − 1, height 0 and O as the highest vertex of the
left-hand side (i.e. R ′ is the left-hand side of the first row of Rd of length d − k − 1). By construction

Pk
d = Sd 
 R 
 R ′

and therefore

rk
(

Pk
d

) = rk(Sd) + rk(R) + rk(R ′), (5.7)

c1
(

Pk
d

) = c1(Sd) + c1(R) + c1(R ′). (5.8)

By [15, Lemma 28],

rk(R) = d(d − 1)

(
d + 1

2

)
and c1(R) = −d(d − 1)(d + 1)

2
,

rk(R ′) = (d − k)(d − k + 1)

2
and c1(R) = (d − k)(d − k + 1)(d − k − 1)

2
.

Now, we conclude by substituting these equalities together with (b) in (5.8) and in (5.7). �
Lemma 5.6. For any integer d and any proper subrepresentation G of Sd, the following inequality holds

μ(G) < μ(Rd).

Proof. Denote by p and q the vertex corresponding to Sd−1 Q (d − 1) and Sd+1 Q (d − 2) respectively
and we will denote by the same letter the corresponding representation with one vertex of multiplic-
ity one. By Lemma 5.5,

μ(Sd) = −3

2

d(d + 1)

d(d + 1)(d + 2)
.

Therefore, since rk(S j Q (l)) = j + 1 and c1(S j Q (l)) = (2l+ j)( j+1)
2 we get
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μ(Sd \ p) = −3d2

d(d2 + 3d + 1)
,

μ(Sd \ q) = −3(d2 + d − 1)

(d + 2)(d2 + d − 1)
,

μ(Sd \ (p 
 q)) = −3

2

(3d2 + d − 2)

(d3 + 3d2 − 2)

and from these equalities together with Lemma 5.5 (1) it is easy to see that

μ(Sd \ p) < μ(Rd), μ(Sd \ q) < μ(Rd) and μ
(

Sd \ (p 
 q)
)
< μ(Rd). (5.9)

Now let G be a subrepresentation of Sd . If G contains p and q then G = Sd and it is no a proper
subrepresentation. If G = Sd \ p or G = Sd \ q or G = Sd \ (p 
 q), then by (5.9) and Lemma 5.5(4) we
get

μ(G) < μ(Rd) < μ(Sd)

and we are done. If G � Sd \ (p 
 q), then the inequality

μ(G) < μ(Rd) < μ(Sd)

follows from the fact that by [15, Theorem 36], Sd \ (p 
 q) is stable and hence

μ(G) < μ
(

Sd \ (p 
 q)
)
< μ(Sd). �

Now we are ready to prove our main technical result.

Theorem 5.7. Given any subrepresentation T of Rd, we have μ(T ) < μ(Rd).

Proof. We will proceed by induction on d � 1. By definition, the representation R1 is the following:

◦ ◦
Q (−2) S2 Q (−2)

Then the unique subrepresentation T of R1 is given by the vertex corresponding to Q (−2) and we
immediately check that μ(T ) = − 3

2 < μ(R1) = − 3
5 .

Assume now that Rd−1 satisfies the statement for d � 2 and we are going to prove that the same
is true for Rd .

Now, let T be a subrepresentation of Rd and denote by V i, j , for 1 � i, j � d + 1, the vector spaces
where T is supported. We consider the following three cases A, B and C according to the shape of T .

Case A. There exists at least a pair (i, j), for 1 � i, j � d + 1 and (i, j) �= (d + 1,1), such that V i, j = 0,
and for any 2 � i � d + 1 and 1 � j � d + 1, if V i, j �= 0, then we have V i−1, j �= 0.

Let T1 be a representation whose support with multiplicities is T ∩ Sd and with all nonzero maps.

Claim 1. T1 is a proper subrepresentation of Sd.

Proof. Since all the multiplicities of vertices of Sd are one, it is enough to prove that if V i, j �= 0, then
V i−1, j �= 0 and V i, j+1 �= 0. But this is clear since T is a subrepresentation of Rd and we are under the
hypotheses of case A. The fact that T1 is proper is a direct consequence of the assumptions in this
case. �
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Claim 2. There exists a subrepresentation of Rd−1 supported on T2 := T \ T1

Proof. We denote by bi, j the multiplicities mT2
i, j of T2 at each vertex (i, j) Notice that

bi, j � ad−1
i−1, j−1 = dim U d−1

i−1, j−1 = dim U d
i, j − 1.

It is easy to check that all the other conditions of Lemma 5.2 are also satisfied. Hence, by Lemma 5.2
there exists a subrepresentation of Rd−1 whose support with multiplicities is T2. �

Since T = T1 
 T2, if μ(T1) � μ(T2), by Lemma 2.13 we get

μ(T1) � μ(T ) � μ(T2).

On the other hand, since by Claim 2, T2 is a subrepresentation of Rd−1 and by hypothesis of induction
Rd−1 is stable, we have

μ(T2) < μ(Rd−1).

Thus,

μ(T ) < μ(Rd−1) < μ(Rd)

where the last inequality follows from Lemma 5.5(d).
Assume now μ(T2) < μ(T1). Then, by Lemma 2.13, we have

μ(T2) < μ(T ) < μ(T1).

On the other hand, by Claim 1, T1 is a proper subrepresentation of Sd . Thus, by Lemma 5.6

μ(T ) < μ(T1) < μ(Rd)

and this finishes the case A.

Case B. There exists at least a pair (i, j), for 1 � i, j � d + 1 and (i, j) �= (d + 1,1), such that V i, j = 0,
and there exists at least a V i, j �= 0, such that V i−1, j = 0.

We split this case in two further subcases:

Case B1. Assume V 1, j = 0 for all 1 � j � d + 1.
In that case, we prove the following claim.

Claim 3. T is a subrepresentation of Rd−1 .

Proof. Indeed it is easy to check that V i,1 = 0 for any i and since V 1,2 = 0 we also have Vd+1,2 = 0.
Moreover, if dim(V i, j) = ad

i, j , then we would have dim(V 1, j) = 1 which is a contradiction. So we have

dim(V i, j) < ad
i, j . Thus the support of T is contained in the support of Rd−1. Now it is easy to see that

T is a subrepresentation of Rd−1 by using Lemma 5.2. �
By hypothesis of induction Rd−1 is stable, thus by Claim 3,

μ(T ) < μ(Rd−1) < μ(Rd)

where the last inequality follows form Lemma 5.5(d).
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Case B2. Assume that there exists a V 1, j �= 0.
Let i0 be the maximal i � 1 such that V i,1 �= 0 or let i0 = 1 if for any i, V i,1 = 0. Let T1 be the

maximal staircase contained in T \ (Sd−i0 ∩ T ). Clearly T1 is a proper subrepresentation of Sd .

Claim 4. There exists a subrepresentation of Rd−1 whose support with multiplicities is T2 := T \ T1 .

Proof. Denote by bi, j the multiplicities of T2. First of all notice that

b1, j = 0 and bi,1 = 0

for any i, j. Indeed if b1, j = 1, then it would implies that the staircase T1 has multiplicity 0 at the
vertex (1, j). But it is easy to see that this would contradict the maximality of the staircase T1. On
the other hand, we also have

bd+1,2 = 0.

Indeed, if bd+1,2 �= 0 then we would have in particular dim Vd+1,2 = 1 but this is impossible since we
are under the assumptions of case B.

Assume now that bi, j = ad
i, j , which implies dim(V i, j) = ad

i, j . Then we would have

dim Vhk = ad
hk

for any 1 � h � i and j � k � d + 1. But this in particular implies that the vertex (i, j) is contained in
the staircase T1 and so bi, j = ad

i, j−1 which is a contradiction.
Thus, the support of T2 is contained in the support of Rd−1. In addition, it can be easily checked

that all the assumptions of Lemma 5.2 are satisfied. Hence there is a subrepresentation of Rd−1 whose
support with multiplicities is T2 and Claim 4 is proved. �

Since T = T1 
 T2, with T1 a proper subrepresentation of Sd and T2 a subrepresentation of Rd−1
we conclude with the same argument as in case A that

μ(T ) < μ(Rd).

Case C. For any pair (i, j), for 1 � i, j � d + 1 and (i, j) �= (d + 1,1), we have V i, j �= 0.
First of all notice that P d

d ⊂ T . Denote by T1 = T ∩ P 1
d . It is immediate to observe that there exists

some k, 1 � k � d such that

T1 = P d
k .

Thus, by Lemma 5.5(e)

μ(T1) < μ(Rd).

Claim 5. There exists a subrepresentation of Rd−1 whose support with multiplicities is T2 := T \ T1 .

Proof. It is clear that the support of T2 is contained in the support of Rd−1. On the other hand, notice
that since T1 = Pk

d , then dim Vd+1, j = 1, for any 2 � j � k + 1. Hence, it is easy to check that all the
conditions in Lemma 5.2 are satisfied by the multiplicities of T2. �

Once again, since T = T1 
 T2, with T2 a subrepresentation of Rd−1 and μ(T1) < μ(Rd), we con-
clude as in the above cases A and B. This concludes the proof of the theorem. �
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A first consequence of the previous theorem is that the properties of a representation of type Rd
define a unique (up to isomorphism) representation. This implies, by Theorem 5.1, that any represen-
tation of type Rd is isomorphic to the representation associated to the almost square bundle Ed .

Proposition 5.8. Any two representations R and R ′ of type Rd are isomorphic.

Proof. Notice that, since the invariant Euler characteristic is a topological invariant and hence only
depends on the support of the representation, we have

χ(R, R ′)G = χ(R, R)G = χ(Ed, Ed)
G = 1

where the last equality follows from Theorem 4.2. Let us denote by E (resp. E ′) the homogeneous
vector bundle associated to R (resp. R ′). They have the same rank and Chern classes. Notice that E
and E ′ are multistable bundles by Theorems 2.2 and 5.7. Hence, by Serre duality, we have

ext2(R, R ′)G = ext2(E, E ′)G = hom(E ′, E(−3))G = 0.

Then, it follows that hom(R, R ′)G � 1 and thus there exists a nontrivial morphism of representations
f : R → R ′ . This morphism must be an isomorphism since otherwise the subrepresentations ker( f )
or Im( f ) would contradict Theorem 5.7 for R or R ′ . �
Remark 5.9. The previous proposition also implies that the moduli space of homogeneous bundles
containing an almost square bundle is a reduced point. For more details on the moduli problem of
homogeneous bundles see [13], and [16, Section 7].

We are finally in a position to prove the main result of this section.

Theorem 5.10. Any almost square bundle on P2 is stable.

Proof. Since by Theorem 4.2 Ed is simple, it is enough to prove that it is multistable. By Propo-
sition 5.8, we know that Rd is the representation of the quiver QP2 associated to Ed , hence by
Theorem 2.2 to prove that Ed is multistable it is enough to see that for any subrepresentation T
of Rd , μ(T ) < μ(Rd). But this is true by Theorem 5.7 and this concludes the proof. �
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